• Title/Summary/Keyword: Carbon composite

Search Result 2,812, Processing Time 0.027 seconds

Composite aluminum-slab RC beam bonded by a prestressed hybrid carbon-glass composite material

  • Rabahi Abderezak;Tahar Hassaine Daouadji;Bensatallah Tayeb
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.573-592
    • /
    • 2023
  • This paper presents a careful theoretical investigation into interfacial stresses in composite aluminum-slab reinforced concrete beam bonded by a prestressed hybrid carbon-glass composite material. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the aluminum beam, the slab reinforced concrete, the hybrid carbon-glass composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions. It is shown that the stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behaviour of the interface and design of the hybrid structures.

Preparation of Amine-epoxy Adducts(AEA)/Thin Multiwalled Carbon Nanotubes (TWCNTs) Composite Particles using Dry Processes

  • Jung, Hyun-Taek;Cho, Young-Min;Kim, Tae-Ho;Kim, Tae-Ann;Park, Min
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.107-111
    • /
    • 2010
  • We prepared the amine epoxy adducts (AEA)/thin multiwalled carbon nanotubes (TWCNTs) composite particles using nonsolvent based methods including dry mechano-chemical bonding(MCB) process and supercritical fluid (SCF) process. The resulting TWCNTs/AEA composite particles have been used as curing agents for urethane modified bispheol A type epoxy resin. The thermal, thermomechanical properties of the epoxy resins cured with TWCNTs/AEA composite particles were measured by DMA and the dispersion of CNT was characterized by SEM. Because of high degree of CNT dispersion, thermal and mechanical properties of the epoxy resin cured with TWCNTs/AEA composite particles prepared by SCF process are better than those cured with mechano-chemically prepared TWCNTs/AEA composite particles.

X-ray Photoelectron Spectroscopic Analysis of Modified MWCNT and Dynamic Mechanical Properties of E-beam Cured Epoxy Resins with the MWCNT

  • Lee, Young-Seak;Im, Ji-Sun;Yun, Seok-Min;Nho, Young-Chang;Kang, Phil-Hyun;Jin, Hang-Kyo
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.314-319
    • /
    • 2009
  • The surface treatment effects of reinforcement filler were investigated based on the dynamic mechanical properties of mutiwalled carbon nanotubes (MWCNTs)/epoxy composites. The as-received MWCNTs(R-MWCNTs) were chemically modified by direct oxyfluorination method to improve the dispersibility and adhesiveness with epoxy resins in composite system. In order to investigate the induced functional groups on MWCNTs during oxyfluorination, X-ray photoelectron spectroscopy was used. The thermo-mechanical property of MWCNTs/epoxy composite was also measured based on effects of oxyfluorination treatment of MWCNTs. The storage modulus of MWCNTs/epoxy composite was enhanced about 1.27 times through oxyfluorination of MWCNTs fillers at $25^{\circ}C$. The storage modulus of oxyfluorinated MWCNTs (OF73-MWCNTs) reinforced epoxy composite was much higher than that of R-MWCNTs/epoxy composite. It revealed that oxygen content led to the efficient carbon-fluorine covalent bonding during oxyfluorination. These functional groups on surface modified MWCNTs induced by oxyfluorination strikingly made an important role for the reinforced epoxy composite.

Iron Oxide-Carbon Nanotube Composite for NH3 Detection (산화철-탄소나노튜브 나노복합체의 암모니아 가스센서 응용)

  • Lee, Hyundong;Kim, Dahye;Ko, DaAe;Kim, Dojin;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.187-193
    • /
    • 2016
  • Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with $500^{\circ}C/2h$ oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.

The Effect of Pre-carbonization Condition on the Mechanical Properties of Nonwoven Carbon/Phenolic Composites (전 열처리 조건이 탄소/페놀 부직포 복합재료의 역학적 성질에 미치는 영향)

  • 정경호;박종규;이성호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.133-136
    • /
    • 2001
  • The effect of pre-carbonization condition on the mechanical properties of nonwoven needle-punched carbon/phenolic composite was studied. The nonwoven Oxi-PAN felt was pre-carbonized at different temperature. The pre-carbonized Oxi-PAN felt was needle-punched and then carbonized. Needle-punched nonwoven carbon preforms were formed into composites with phenol resin. The tensile and flexural strengths showed maximum value with pre-carbonization temperature of $500^{\circ}C$. Compared with the non-pre-carbonized composite, the mechanical properties were slightly improved.

  • PDF

Voxelization-based Model for Predicting Thermal Conductivities of Spun Type Carbon Fabric Composites (복셀화기법을 이용한 탄소방적사강화 복합재료의 열전도도 모델링)

  • Cho, Young-Jun;Sul, In-Hwan;Kang, Tae-Jin;Park, Jong-Kyoo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.90-93
    • /
    • 2005
  • A thermal model of carbon spun yarn and its composite is presented. Based on voxelization method, the unit cells of spun carbon yam and its composite are divided into a number of volume elements and the local material properties have been given to each element. By using Finite Difference Method, temperature distribution in the unit cell can be obtained. Effective thermal conductivity of unit cell is calculated using the temperature distribution and thermal conductivities of local elements.

  • PDF

A Study on the Plain Grinding Characteristics of Carbon Fiber Epoxy Composite with the GC Grinding Wheel (GC 연삭숫돌을 이용한 탄소섬유 에폭시 복합재료의 평면 연삭특성에 관한 연구)

  • 한흥삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.34-47
    • /
    • 2000
  • Since carbon fiber epoxy composite materials have excellent properties for structures due to their high specific strength, high specific modulus, high damping and low thermal expansion, the hollow shafts made of carbon fiber epoxy composites have been widely used for power transmission shafts for motor vehicles , spindles of machine tools, motor base, bearing mount for tool up and manufacturing. The molded composite machine elements are not usually accurate enough for mechanical machine elements, which require turning drilling , cutting and grinding. The experiment are surface grinding wheel GC60 to the carbon fiber epoxy composite specimen with respect to staking angle [0]nT , [45]nT, [90]nT on the CNC grinding machine. In this paper, the surface grinding characteristics of composite plate, which are surveyed experimentally and analytically with respect to the grinding force, surface roughness and wheel loading according to the variable depth of cut, wheel velocity and table feed rate are investigated.

  • PDF

Mechanical characteristics of laminated composites using hybrid prepreg (하이브리드 프리프레그를 사용한 적층복합재료의 기계적 특성)

  • 정성교;정성균;임승규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.189.1-192
    • /
    • 1999
  • Mechanical characteristics of composite laminates with carbon tissue and glass scrim are evaluated in this paper. Composite laminates in USN125 group are made by inserting carbon tissue and glass scrim between layers. Consequently it was shown that mechanical characteristics of carbon fiber reinforced composite materials were improved by inserting carbon tissue.

  • PDF

Cost-effective structural health monitoring of FRPC parts for automotive applications

  • Mitschang, P.;Molnar, P.;Ogale, A.;Ishii, M.
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.135-149
    • /
    • 2007
  • In the automobile industry, structural health monitoring of fiber reinforced polymer composite parts is a widespread need for maintenance before breakdown of the functional elements or a complete vehicle. High performance sensors are generally used in many of the structural health monitoring operations. Within this study, a carbon fiber sewing thread has been used as a low cost laminate failure sensing element. The experimentation plan was set up according to the electrical conductance and flexibility of carbon fiber threads, advantages of preforming operations, and sewing mechanisms. The influence of the single thread damages by changing the electrical resistance and monitoring the impact location by using carbon thread sensors has been performed. Innovative utilization of relatively cost-effective carbon threads for monitoring the delamination of metallic inserts from the basic composite laminate structure is a highlighting feature of this study.

Numerical Analysis of Palladium added Carbon Fiber/Al using Extended Finite Element Method and Multiscale Technique (확장유한요소법과 멀티스케일 기법을 통한 팔라듐 첨가 탄소섬유/알루미늄 적층구조에 대한 수치해석)

  • Park, Woo Rim;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.7-14
    • /
    • 2019
  • A palladium can adsorb hydrogen and detect leaking hydrogen through changes in color and electrical resistance. This study is to evaluate the structural behavior of carbon fiber adding palladium composite materials used in the hydrogen storage vessel. A multi-scale analysis technique was used to analyze accurately the behavior of each material in relation to the microscopic composition. The multi-scale analysis is more proper and precise for composite materials because of considering the individual microscopic structure and properties of each material for composite materials. Also the crack evaluation was performed by XFEM analysis to confirm the reinforcement performance of aluminum as a liner of the hydrogen vessel. The results show that the addition of the palladium material increased the macroscopic stress, but microscopically the carbon fiber stress was reduced. It means the performance improvement of the palladium added carbon fiber/Al composite.