• 제목/요약/키워드: Carbon Steel Pipe

검색결과 140건 처리시간 0.032초

원자력발전소 적용 고밀도 폴리에틸렌 배관의 맞대기 융착절차 및 검증절차 분석 (Butt-fusing Procedures and Qualifications of High Density Polyethylene Pipe for Nuclear Power Plant Application)

  • 오영진;박흥배;신호상
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.1-7
    • /
    • 2013
  • In nuclear power plants, lined carbon steel pipes or PCCPs (pre-stressed concrete cylinder pipes) have been widely used for sea water transport systems. However, de-bonding of linings and oxidation of PCCP could make problems in aged NPPs (nuclear power plants). Recently at several NPPs in the United States, the PCCPs or lined carbon steel pipes of the sea water or raw water system have been replaced with HDPE (high density polyethylene) pipes, which have outstanding resistance to oxidation and seismic loading. ASME B&PV Code committee developed Code Case N-755, which describes rules for the construction of buried Safety Class 3 polyethylene pressure piping systems. Although US NRC permitted HDPE materials for Class 3 buried piping, their permission was limited to only 10-year operation because of several concerns including the quality of fusion zone of HDPE. In this study, various requirements for fusion qualification test of HDPE and some regulatory issues raised during HDPE application review in foreign NPPs are introduced.

탄소강관의 ERW 용접부 손상에 관한 연구 (Study on defect of ERW weldment of carbon steel pipes)

  • 이보영;이재윤;이성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.666-669
    • /
    • 2003
  • Electrical resistance welded steel pipes showed leakage failure within 5 years usage. Microstructural analysis and hardness test were carried out, whose results gave no evidences about the reason of failure. For the analysis, 3 kinds of ERW pipes with different heat inputs were produced. Microstructural differences according to the different heat inputs were detected. Differences of the amount of inclusion in the weld line were observed. It is concluded that the difference of heat input during ERW pipe production caused the microstructural changes which resulted in the leakage failure.

  • PDF

Design of small impact test device for concrete panels subject to high speed collision

  • Kim, Sanghee;Jeong, Seung Yong;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • 제7권1호
    • /
    • pp.23-30
    • /
    • 2019
  • Five key items were used to create an economical and physically small impact test device for concrete panels subject to high speed collision: an air-compressive system, carbon steel pipe, solenoid valve, carrier and carrier-blocking, and velocity measurement device. The impact test device developed can launch a 20 mm steel spherical projectile at over 200 m/s with measured impact and/or residual velocity. Purpose for development was to conduct preliminary materials tests, prior to large-scale collision experiments. In this paper, the design process of the small impact test device was discussed in detail.

Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field

  • Fakhar, Mohammad Hosein;Fakhar, Ahmad;Tabatabaei, Hamidreza
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.281-292
    • /
    • 2019
  • In this paper, analysis of critical fluid velocity and heat transfer in the nanocomposite pipes conveying nanofluid is presented. The pipe is reinforced by carbon nanotubes (CNTs) and the fluid is mixed by $AL_2O_3$ nanoparticles. The material properties of the nanocomposite pipe and nanofluid are considered temperature-dependent and the structure is subjected to magnetic field. The forces of fluid viscosity and turbulent pressure are obtained using momentum equations of fluid. Based on energy balance, the convection of inner and outer fluids, conduction of pipe and heat generation are considered. For mathematical modeling of the nanocomposite pipes, the first order shear deformation theory (FSDT) and energy method are used. Utilizing the Lagrange method, the coupled pipe-nanofluid motion equations are derived. Applying a semi-analytical method, the motion equations are solved for obtaining the critical fluid velocity and critical Reynolds and Nusselt numbers. The effects of CNTs volume percent, $AL_2O_3$ nanoparticles volume percent, length to radius ratio of the pipe and shell surface roughness were shown on the critical fluid velocity, critical Reynolds and Nusselt numbers. The results are validated with other published work which shows the accuracy of obtained results of this work. Numerical results indicate that for heat generation of $Q=10MW/m^3$, adding 6% $AL_2O_3$ nanoparticles to the fluid increases 20% the critical fluid velocity and 15% the Nusselt number which can be useful for heat exchangers.

ELECTROSLAG STRIP OVERLAY OF PIPE, FITTINGS, AND PRESSURE VESSELS

  • Dan, Capitanescu
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.355-360
    • /
    • 2002
  • ElectroSlag Strip Overlaying (ESSO) process has been around since 1970. ESSO process had limited acceptance due to a few problems associated with the use of this process in its very early stage. Limited knowledge and, most significantly, poor quality of the equipment and welding flux gave the ESSO process a bad name. However, this process is well accepted today and used in North America, Europe and Japan. The ESSO process provides low dilution overlays at high deposition rates, excellent and consistent deposit chemistry with excellent surface quality, and virtually no defects. Capitan has taken this process one step further through extensive research and development of the process itself as well as the equipment. The improvement brought to the process warranted the issuance in May 2000 of an US patent. This study demonstrates the feasibility of this process with immediate positive production results. The main achievements of this work are as follows: $\textbullet$ Development of six various strip-flux combinations on three different base materials: carbon steel, $\frac{1}{4}$ Cr/.5 Mo and 2 $\frac{1}{4}$ Cr/l Mo, fully tested with: penetrant, ultrasound, bends, hardness, overlay chemistry, corrosion and hydrogen disbonding. $\textbullet$ 12" dia. 90 hot formed elbows from straight pipe electroslag overlayed with "1 layer" and "2 layer" Alloy 625 $\textbullet$ a very unique development of miniaturized overlaying equipment able to perform overlay in pipe with diameters as low as 10" (254 mm). This development has large applications in the field of offshore, petrochemical, refining, pulp and paper and power generation industries. The aftermath of this development was its immediate acceptance by major end users with the completion of four projects of overlayed pipe in the USA and Far East Asia.

  • PDF

방사선투과필름에서 Density Profile을 이용한 배관의 두께 평가 (Thickness Evaluation of Pipeline Using Density Profile on a Radiograph)

  • 이성식;장병규;김영환
    • 비파괴검사학회지
    • /
    • 제22권5호
    • /
    • pp.483-489
    • /
    • 2002
  • 내부가 비어 있거나 유체로 절반 채워진 보온 및 비보온 배관에 대해 방사선 조사 방향에 따른 투과두께와 농도 변화를 전산 시뮬레이션 하였다. 결과적으로 내부가 비어있는 배관의 경우 투과필름에서 농도 변화가 연속적이며 대칭적인 반면, 유체가 절반 채워진 배관의 경우는 방사선 조사 방향에 따라 농도 변화가 비대칭적이며 크게 달라질 수 있음을 알았다. 인공 결함을 가공한 탄소강 배관 시편을 방사선원 Ir-192로 방사선투과시험 한 뒤 농도 변화를 측정하고 이론적으로 계산한 농도 변화와 비교한 결과 산란 방사선에 의한 영향이 큰 가장자리를 제외한 부분에서는 농도 변화를 이용한 두께 평가가 가능함을 확인하였다.

Seismic behavior of deep-sea pipeline after global buckling under active control

  • Jianshuo Wang;Tinghao Meng;Zechao Zhang;Zhihua Chen;Hongbo Liu
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.261-267
    • /
    • 2024
  • With the increase in the exploitation depth of offshore oil and gas, it is possible to control the global buckling of deep-sea pipelines by the snake lay method. Previous studies mainly focused on the analysis of critical buckling force and critical temperature of pipelines under the snake-like laying method, and pipelines often suffer structural failure due to seismic disasters during operation. Therefore, seismic action is a necessary factor in the design and analysis of submarine pipelines. In this paper, the seismic action of steel pipes in the operation stage after global buckling has occurred under the active control method is analyzed. Firstly, we have established a simplified finite element model for the entire process cycle and found that this modeling method is accurate and efficient, solving the problem of difficult convergence of seismic wave and soil coupling in previous solid analysis, and improving the efficiency of calculations. Secondly, through parameter analysis, it was found that under seismic action, the pipe diameter mainly affects the stress amplitude of the pipeline. When the pipe wall thickness increases from 0.05 m to 0.09 m, the critical buckling force increases by 150%, and the maximum axial stress decreases by 56%. In the pipe soil interaction, the greater the soil viscosity, the greater the pipe soil interaction force, the greater the soil constraint on the pipeline, and the safer the pipeline. Finally, the pipeline failure determination formula was obtained through dimensionless analysis and verified, and it was found that the formula was accurate.

Assessment of flow-accelerated corrosion-induced wall thinning in SA106 pipes with elbow sections

  • Seongin Moon;Jong Yeon Lee;Kyung-Mo Kim;Soon-Woo Han;Gyeong-Geun Lee;Wan-Young Maeng;Sebeom Oh;Dong-Jin Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1244-1249
    • /
    • 2024
  • A combination of flow-accelerated corrosion (FAC) tests and corresponding computational fluid dynamics (CFD) tests were performed to determine the hydrodynamic parameters that could help predict the highly susceptible location to FAC in the elbow section. The accelerated FAC tests were performed on a specimen containing elbow sections fabricated using commercial 2-inch carbon steel pipe. The tests were conducted at flow rates of 9 m/s under the following conditions: water temperature of 150 ℃, dissolved oxygen <5 ppb, and pH 7. Thickness reduction of the specimen pipe due to FAC was measured using ultrasonic testing. CFD was conducted on the FAC test specimen, and the turbulence intensity, and shear stress were analyzed. Notably, the location of the maximum hydrodynamic parameters, that is, the wall shear stress and turbulent intensity, is also the same location with maximum FAC rate. Therefore, the shear stress and turbulence intensity can be used as hydrodynamic parameters that help predict the FAC-induced wall-thinning rate. The results provide a method to identify locations susceptible to FAC and can be useful for determining inspection priority in piping systems.

고장력 강재의 전기저항 용접부 열처리 특성 및 기술에 대한 연구 (A Study on the Characteristics of Heat Treated ERW Weld Seam and the Technology of Seam Annealing)

    • Journal of Welding and Joining
    • /
    • 제17권1호
    • /
    • pp.133-144
    • /
    • 1999
  • To fine seam annealer capacity of through thickness seam annealing in terms of through thickness microstructure change with increased toughness and elongation leaving heat trace on it, high strength steel pipes of ERW with different thickness were tested in different seam annealing temperature measured on the outer surface of pipes. Annealing temperature and microstructure of the weld seam were changed through applied seam annealing condition. Toughness and tensile test with hardness and microstructure analysis were done on the annealed weld seam to fine its characteristics as a primary step and annealing characteristics according to different seam annealing condition. Through a study of annealed ERW weld seam characteristics and seam annealing technology, amount of electric power should apply in decreased manner to arranged inductors of annealer in the order of 1st, 2nd, 3rd, so on for proper seam annealing. For example of 15.4mm thick and 610mm outside diameter pipe, applied power for proper seam annealing is 600 -650kw at 1st inductor, 450 - 500kw at 2nd inductor, 200-250 kw at 3rd inductor of annealer during 10 - 12M/minute moving speed of pipe. Also, the penetration depth of heat trace along the thickness direction of weld during seam annealing can be estimated through the equation 17mm/kv$\times$voltage(kv) with the microstructure and hardness analysis of thick weld seam as well as study of seam annealing and comparison of cooling condition to CCT diagram of low carbon high strength steel. From this result, the difference between the technological applicability of full annealing condition based on phase diagram and full penetration of heat trace based on CCT diagram along the thickness of weld seam is discussed.

  • PDF

첩릿변환을 이용한 배관 축방향 결함검출 (Detection of Axial Defects in Pipes Using Chirplet Transform)

  • 김영완;박경조
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.26-31
    • /
    • 2016
  • The implementation of chirplet transform to locate axially aligned defects in pipes has been investigated. The results are obtained from experiments performed on a carbon steel pipe using magnetostrictive sensors. Chirplet transform is applied to the reflected signal to separate the individual modes from dispersive and multimodal waveform. The separated modes are used to calculate reflection coefficients which would be used to characterize defects. It is found that the reflection from a defect consists of the wave pulses with gradually decaying amplitudes. Also the results show that the reflection coefficient initially increases with the crack length but finally reaches an oscillating regime.