• Title/Summary/Keyword: Carbon Source

Search Result 2,750, Processing Time 0.036 seconds

Biodegradation of Phenol by Comamonas testosteroni DWB-1-8 Isolated from the Activated Sludge of Textile Wastewater (섬유 폐수 활성 슬러지에서 분리한 Comamonas testosteroni의 생물학적 페놀 분해)

  • Kwon, Hae Jun;Choi, Doo Ho;Kim, Mi Gyeong;Kim, Dong-Hyun;Kim, Young Guk;Yoon, Hyeokjun;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.156-161
    • /
    • 2020
  • Since industrialization, the production and utilization of various chemicals has contributed to improving the quality of our lives, but the subsequent discharge of massive waste is inevitable, and environmental pollution is becoming more serious every day. Exposure to chemicals as a result of environmental pollution is having a negative effect on human health and the ecosystem, and cleaning up the polluted environment that can affect our lives is a very important issue. Toxic aromatic compounds have been detected frequently in soil, groundwater, and wastewater because of the extensive use of oil products, and phenol, which is used to produce synthetic resins, textiles, and dyes, is one of the major pollutants, along with insecticides and preservatives. Phenol can cause dyspnea, headache, vomiting, mutation, and carcinogenesis. Phenol-degrading bacterium DWB-1-8 was isolated from the activated sludge of textile wastewater; this strain was identified as Comamonas testosteroni by 16S rRNA gene sequencing. The optimal culture conditions for the cell growth and degradation of phenol were 0.7% K2HPO4, 0.6% NaH2PO4, 0.1% NH4NO3, 0.015% MgSO4·7H2O, 0.001% FeSO4·7H2O, an initial pH of 7, and a temperature of 30℃. The strain was also able to grow by using other toxic compounds, such as benzene, toluene, or xylene (BTX), as the sole source of carbon.

Degradation of Phenanthrene and Pyrene by Burkholderia sp. D5 (Burkholderia sp. D5에 의한 phenanthrene과 pyrene 분해)

  • Kim, Tae-Jeong;Jo, Gyeong-Suk;Ryu, Hui-Uk
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.267-271
    • /
    • 2003
  • Burkholderia sp. D5, a polyaromatic hydrocarbons(PAHs)-degrading bacterium, was isolated from oil-contaminated soil. The bacterium could utilize phenanthrene (Phe) as a sole carbon source but could not use pyrene (Pyr). However, the strain could degrade Pyr when a cosubstrate such as yeast extract (YE) was supplemented. The PAH degradation rate of the bacterium was enhanced by the addition of other organic materials such as YE, peptone and glucose. YE was a particularly effective additive in stimulating cell growth as well as PAH degradation. When 1 g-YE/L was supplemented into the basal salt medium (BSM) with 215 mg-Phe/L, the specific growth rate (0.28 h-1) and Phe-degrading rate (29.30 μmol/L/h) were enhanced approximately ten and two times more than those obtained in the BSM with 215 mg-Phe/L, respectively. Through kinetic analysis, the maximum specific growth rate (μmax) and PAH degrading rate (Vmax) for Phe were obtained as 0.34/h and 289 ${\mu}mol$/L/h, respectively. Also, μmax and Vmax for Pyr were 0.27 h-1 and 50 ${\mu}mol$/L/h, respectively. The degradation rates for each Phe (2.20 μmol/L/h) and Pyr (2.18 μmol/L/h) were lower in mixture substrates than in a single substrate (29.30 ${\mu}mol$/L/h and 9.58 ${\mu}mol$/L/h, respectively). Burkholderia sp. D5 can degrade Phe and Pyr contained in soil, and the PAH degradation rates in soil were 20.03 ${\mu}mol$/L/h for Phe and 1.09 ${\mu}mol$/L/h for Pyr.

Studies on the Petroleum hydrocarbon-utilizing Micro-organisms(Part 2) - On the Production of Single Cell Protein from Petroleum hydrocarbon with a yeast strain - (석유 탄화수소 이용 미생물에 관한 연구 (제 2 보) - 효모를 이용한 석유탄화수소로 부터 단백질 생산에 관하여 -)

  • Lee, Ke-Ho;Shin, Hyun-Kyung
    • Applied Biological Chemistry
    • /
    • v.14 no.1
    • /
    • pp.9-18
    • /
    • 1971
  • In order to obtain basic information on the production of single cell protein from petroleum, more than 400 yeast strains were isolated from various soil samples in Korea utilizing petroleum hydrocarbon as the sole carbon source. A yeast strain showing the highest cell yield among the isolated strains was selected and identified. The optimal culture condition was searched in the flasks shaken throughout the procedure. And the growing characteristics for the selected yeast strain and chemical analysis of the yeast cell component were carried out. The results obtained were as follows: 1. The selected yeast strain was identified as Candida curvata and we named it Candida curvata-SNU 70. 2. The composition of the medium proposed for the present yeast strain is: Light Gas Oil 30ml, Urea 400mg, Ammonium sulfate 100mg, Potasium phosphate (monobasic) 670mg, Sodium phosphate (dibasic) 330mg, Magnesium sulfate 500mg, Calcium carbonate 3g, Yeast extract 50mg, Tween 20 0.05ml, Tap water 1,000ml. 3. Other culture conditions employed for the yeast were pH 5.5-7.0, temp. $30^{\circ}C$ under an affluent aerobic state. 4. Addition of light gas oil in portions to the culture media as the growth proceeded was more effective, especially in the cultivation on the higher oil concentration media. 5. Studies on the propagation of the yeast cells in the light gas oil medium revealed that the yeast has the lag phase lasted 16 hours and the logarithmic growth phase covered 16 to 28 hours. The specific growth rate was about $0.22\;hr^{-1}$ and doubling time was 3.2 hrs. during the logarithmic growth phase. 6. Under the cultural condition employed, the cell yield against the amount of light gas oil (wt%) was 16.1% and the protein content of the dried yeast cells was 48.4%.

  • PDF

Suggestion for Technology Development and Commercialization Strategy of CO2 Capture and Storage in Korea (한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안)

  • Kwon, Yi Kyun;Shinn, Young Jae
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.381-392
    • /
    • 2018
  • This study examines strategies and implementation plans for commercializing $CO_2$ capture and storage, which is an effective method to achieve the national goal of reducing greenhouse gas. In order to secure cost-efficient business model of $CO_2$ capture and storage, we propose four key strategies, including 1) urgent need to select a large-scale storage site and to estimate realistic storage capacity, 2) minimization of source-to-sink distance, 3) cost-effectiveness through technology innovation, and 4) policy implementation to secure public interest and to encourage private sector participation. Based on these strategies, the implementation plans must be designed for enabling $CO_2$ capture and storage to be commercialized until 2030. It is desirable to make those plans in which large-scale demonstration and subsequent commercial projects share a single storage site. In addition, the plans must be able to deliver step-wised targets and assessment processes to decide if the project will move to the next stage or not. The main target of stage 1 (2019 ~ 2021) is that the large-scale storage site will be selected and post-combustion capture technology will be upgraded and commercialized. The site selection, which is prerequisite to forward to the next stage, will be made through exploratory drilling and investigation for candidate sites. The commercial-scale applicability of the capture technology must be ensured at this stage. Stage 2 (2022 ~ 2025) aims design and construction of facility and infrastructure for successful large-scale demonstration (million tons of $CO_2$ per year), i.e., large-scale $CO_2$ capture, transportation, and storage. Based on the achievement of the demonstration project and the maturity of carbon market at the end of stage 2, it is necessary to decide whether to enter commercialization of $CO_2$ capture and storage. If the commercialization project is decided, it will be possible to capture and storage 4 million tons of $CO_2$ per year by the private sector in stage 3 (2026 ~ 2030). The existing facility, infrastructure, and capture plant will be upgraded and supplemented, which allows the commercialization project to be cost-effective.

Eutrophication in the Upper Regions of Brackish Lake Sihwa with a Limited Water Exchange (물 교환이 제한적인 시화호 상류 기수역의 부영양화)

  • Choi, Kwnag-Soon;Kim, Sea-Won;Kim, Dong-Sup;Heo, Woo-Myoung;Lee, Yun-Kyoung;Hwang, In-Seo;Lee, Han-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.216-227
    • /
    • 2008
  • To understand eutrophication in the upper regions of brackish Lake Sihwa with a limited water exchange, temporal and spatial distributions of pollutants in water and sediment were investigated from March to October in 2005 and 2006. Also, pollution levels of water and sediment were estimated by trophic state index (TSI) and sediment quality guideline (SQG). Total nitrogen (TN), total phosphorus (TP), organic matter (COD), and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in the surface waters were largely varied temporally and spatially, and the variations were highest in the middle areas where strong halocline was formed. Chl-$\alpha$ concentrations in the middle area were very high in April (>$900\;{\mu}g\;L^{-1}$) when algal blooms (red tides) occurred. The relationships between TN and Chl-$\alpha$ (r=0.31), and TP and Chl-$\alpha$ (r=0.65) indicated that the algal growth was primarily affected by phosphorus rather than nitrogen. The distribution of COD was similar to that of Chl-$\alpha$, indicating that the autochthonous organic matters may be a more important carbon source, especially in the middle areas. The brackish water regions were classified as eutrophic or hypertrophic based on their TSI values ($69{\sim}76$). In addition, the content of nutrients (especially TP) in surface sediments were classified as severe polluted state, except the upper areas. Major causes of the eutrophication observed were probably due to high nutrients loading from watersheds, the phosphorus release from anaerobic sediment, and long retention time by the limited water exchange through the sluice gates.

The Hydrochemical and Stable Isotope Characteristics of Shallow Groundwater Near the Gwangju Stream (광주천 인근 천부 지하수의 수리화학 및 안정동위원소 특성)

  • Yoon, Wook;Ji, Se-Jung;So, Chil-Sub
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.441-455
    • /
    • 2003
  • The most common water types are found to be Ca-$HCO_3$, Ca-Na-$HCO_3$ and Ca-Na-$HCO_3$-Cl in Gwangju groundwater. Groundwater near the Gwangju stream are characterized Ca-Cl water type, with over 50 mg/L of C1- and 400 ${\mu}$S/cm of EC. The systematic variation of $Cl^-$, $HCO_3^-$,- EC and ${\gamma}^{18}O$ values in groundwater with distance away from drainages is caused by streamwater infiltration. Stable isotope data indicate that ${\gamma}$D and ${\gamma}^{18}O$ values of groundwaters near drainages were enriched by evaporation effect, showing a equation of ${\gamma}$D=7. 1${\times}{\gamma}^{18}O$-1. ${\gamma}^{18}O$ values over -6${\textperthansand}$ are anomalous in the unconfined groundwater zones, which are influenced by the local surface water enriched in $^{18}O$ composition. Groundwater in highland shows remarkably light ${\gamma}^{18}O$ values below -8$\textperthousand$. The infiltration of streamwater is dominant in unconfined alluvium aquifer near drainages. ${\gamma}^{13}$CDIC values (-17.6∼-15.2$\textperthousand$) of groundwaters near drainages revealed that dissolved inorganic carbon (DIC) is predominantly originated from natural soil-derived $CO_2$. ${\gamma}^{15}N$ and ${\gamma}^{18}O$ values of nitrate are 0∼17.0${\textperthansand}$ and 6.6∼17.4${\textperthansand}$, respectively. Relationship between ${\gamma}^{15}N$ and ${\gamma}^{18}O$ shows a systematic isotopic fractionation caused by denitrification of 40∼60%, suggesting that the major source of groundwater nitrate originated from nitrate of soils, and mixing nitrate of soil and sewage or manure.

Surface Exchange of Energy and Carbon Dioxide between the Atmosphere and a Farmland in Haenam, Korea (한국 해남 농경지와 대기간의 에너지와 이산화탄소의 지표 교환)

  • Hee Choon Lee;Jinkyu Hong;Chun-Ho Cho;Byoung-Cheol Choi;Sung-Nam Oh;Joon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.61-69
    • /
    • 2003
  • Surface energy and $CO_2$ fluxes have been measured over a farmland in Haenam, Korea since July 2002. Eddy covariance technique, which is the only direct flux measurement method, was employed to quantitatively understand the interaction between the farmland ecosystem and the atmospheric boundary layer. Maintenance of eddy covariance system was the main concern during the early stage of measurement to minimize gaps and uncertainties in the dataset. Half-hourly averaged $CO_2$ concentration showed distinct diurnal and seasonal variations, which were closely related to changes in net ecosystem exchange (NEE) of $CO_2$. Daytime maximum $CO_2$ uptake was about -1.0 mg $CO_2$ m$^{-2}$ s$^{-1}$ in August whereas nighttime $CO_2$ release was up to 0.3 mg $CO_2$ m$^{-2}$ s$^{-1}$ during the summer. Both daytime $CO_2$ uptake and nighttime release decreased gradually with season. During the winter season, NEE was from near zero to 0.05 mg $CO_2$ m$^{-2}$ s$^{-1}$ . FK site was a moderate sink of atmospheric $CO_2$ until September with daily NEE of 22 g $CO_2$ m$^{-2}$ d$^{-1}$ . In October, it became a weak source of $CO_2$ with an emission rate of 2 g $CO_2$ m$^{-2}$ d$^{-1}$ . Long-term flux measurements will continue at FK site to further investigate inter-annual variability in NEE. to better understand these exchange mechanism and in-depth analysis, process-level field experiments and intensive short-term intercomparisons are also expected to be followed.

Development of a Culture Medium for Growth and Sporulation of Bacillus polyfermenticus SCD (프로바이오틱 비스루트균의 아포생산을 위한 최적배지 개발)

  • Lee, Kwang-Ho;Park, Kyu-Yong;Kim, Seong-Mi;Kim, Won-Seok;Paik, Hyun-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.263-268
    • /
    • 2002
  • Bacillus polyfermenticus SCD, which is commonly called a 'Bisroot' strain, has been appropriately used for the treatment of long-term intestinal disorders, since the live strains, in the form of active endospores, can successfully reach the target intestine. Goal of this study was to develop an industrial medium for growth and sporulation of B. polyfermenticus SCD. From the results of effect of mixed carbon sources on growth and sporulation of B. polyfermenticus SCD, glucose 2% and starch 2% was particularly found to be the most effective for the maximum number of spore production, resulting in spore cells of $4.3{\times}10^9\;spores/mL$ with a sporulation yield of 91%. For the effect of nitrogen sources, the maximum spore cells of $5.7{\times}10^9\;spores/mL$ of B. polyfermenticus SCD with a sporulation yield of 97% was obtained when B. polyfermenticus SCD was cultivated in an optimum nitrogen source medium containing 5% soybean flour. A medium involving proper phosphate salt yielded the maximum number of a spore cells of $6.0{\times}10^9\;spores/mL$ with a sporulation yield of 95%. Finally, the efficacy of an industrial medium (KH5 medium) on growth and sporulation of B. polyfermenticus SCD was investigated in jar fermenter. The higher number of viable cells $(3.3{\times}10^{10}\;cells/mL)$ and spore cells $(3.0{\times}10^{10}\;spores/mL)$ were obtained in 5 L fermenter when compared with a 500 mL baffle flask cultivation. Thus, KH5 medium developed in this study shows promise as an industrial medium because of higher cells and sporulation yield.

Development of Saccharomyces cerevisiae Strains with High RNA Content (리보핵산을 다량으로 함유하는 Saccharomyces cerevisiae 균주의 개발)

  • Kim, Jae-Sik;Kim, Jin-Wook;Shim, Won;Min, Byoung-Cheol;Kim, Jung-Wan;Park, Kwan-Hwa;Pek, Un-Hua
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.465-474
    • /
    • 1999
  • RNase activity of Saccharomyces cerevisiae ATCC 7754 was investigated to obtain strains with high ribonucleic acid (RNA) content. The yeast strain contained two RNase activities; an acidic RNase with a optima of pH $3{\sim}4$ and an alkaline RNase with a optima pH 9. The acidic RNase activity was inhibited by $0.08\;M\;HgCl_{2}$ most drastically. The alkaline RNase activity was inhibited by 2.0 M NaCl or KCl, while enhanced by addition of $0.05\;M\;CaCl_{2},\;0.02\;M\;ZnSO_{4},\;or\;0.008\;M\;HgCl_{2}$. Various mutants of Saccharomyces cerevisiae ATCC 7754 were isolated by ethylmethane sulfonate (EMS) treatment or $\gamma$-ray/ultra violet irradiation. Among the mutants that were sensitive to high concentration of KCl which inhibits alkaline RNase, B24 was selected for high RNA content per culture volume. Growth characteristics of the mutant were comparable to those of the mother strain with optimum growth at pH $4.5{\sim}5.5$. The mutant accumulated higher content of RNA than the mother strain when glucose was used as the carbon source. However, both growth rate and total RNA content of the mutant were higher in molasses medium than in glucose medium. RNA content of the mutant increased rapidly during the early stage of growth, and then decreased gradually until the culture reached stationary phase by a fed-batch culture in a 5 L jar fermenter. Maximal cell harvest and the final RNA content using the mutant B24 were 69.6 g/L culture broth and 19.8 g/100 g of the dry cell while those using the mother strain were 68 g/L culture broth and 16.1 g/100 g of dry cell, respectively.

  • PDF

Effects of Ambient Particulate Matter($PM_{10}$) on Peak Expiratory Flow and Respiratory Symptoms in Subjects with Bronchial Asthma During Yellow Sand Period (황사기간 중 천식 환자에서 대기 중 미세먼지($PM_{10}$)가 최대호기 유속과 호흡기 증상에 미치는 영향)

  • Park, Jeong Woong;Lim, Young Hee;Kyung, Ssun Young;An, Chang Hyeok;Lee, Sang Pyo;Jeong, Seong Hwan;Ju, Young-Su
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.6
    • /
    • pp.570-578
    • /
    • 2003
  • Background : Ambient particles during Asian dust events are usually sized less than $10{\mu}m$, known to be associated with the adverse effects on the general populations. But, there has been no considerable evidence linking these particles to the adverse effects on airways. The objectives of this study was to investigate the possible adverse effects of Asian dust events on respiratory function and symptoms in subjects with bronchial asthma. Patients and Methods : From march to June 2002, Asthmatic patients who were diagnosed with bronchial challenge test or bronchodilator response were enrolled. We divided them into three groups; mild, moderate, and severe, according to the severity. Subjects with other organ insufficiency such as heart, kidney, liver, and malignancy were excluded. All patients completed twice daily diaries and recorded peak flow rate, respiratory symptom, and daily activity. Daily and hourly mean pollutant levels of particulate matter < $10{\mu}m$ in diameter($PM_{10}$), nitrogen dioxide($NO_2$), sulphur dioxide($SO_2$), ozone($O_3$) and carbon monoxide(CO) were measured at the 10 different monitoring sites. Results : Dust events occured 14 times during the study period. Daily averages of 4 air pollutant were measured with an increased level of $PM_{10}$, decreased level of $NO_2$ and $SO_2$, and no change in CO during dust days compared to those during control days. An increase in $PM_{10}$ concentration was associated with an increase of subjects with PEF variability of >20% (p<0.05), night time symptom(p<0.05), and a decrease in mean PEF (p<0.05), which were calculated by the longitudinal data analysis. Otherwise, there was no association between $PM_{10}$ level and bronchodialtor inhaler, and daytime respiratory symptoms. Conclusion : This study shows evidence that ambient air pollution, especially $PM_{10}$, during Asian dust events, could be one of the many aggravating factors at least in patients with airway diseases. This data can be used as a primary source to set up a new policy on air environmental control and to evaluate the safety of air pollution index. We also expect that this research will help identify precise components of dust, which are more linked to the adverse effects.