• Title/Summary/Keyword: Carbon Sheets

Search Result 397, Processing Time 0.039 seconds

A Study on Fatigue Behaviors of RC Beams Strengthened with Carbon Fiber Sheets (CFS로 보강된 RC보의 피로거동에 관한 연구)

  • Park, Jeong-Yong;Cheung, Jin-Hwan;Kim, Seong-Do;Cho, Baik-Soon;Jang, Jun-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.35-38
    • /
    • 2005
  • Carbon fiber sheets are widely used for strengthening the deteriorated RC structures. However most studies on the strengthening method of RC structures with carbon fiber sheets are concerning static problems. The purpose of this experimental study is to present the basic data on fatigue behaviors of. RC beams strengthened with carbon fiber sheets. The experimental parameters of this study are ; 1) the existence of U-shaped carbon fiber sheets at the ends for anchoring, 2) the number of carbon fiber sheet layers in strengthening the RC beams, 3) the load levels of $60\%\~90\%$ of the static bending moment strength, which is obtained form the static tests. Experimental results are estimated from the relationships of load level, displacement, number of repeated load and released energy. It is concluded that U-shaped carbon fiber sheets for end anchoring is very effective and the beams strengthened with one layer of carbon fiber sheet have longer fatigue life than that with three layers.

  • PDF

Hybrid Effects of Carbon-Glass FRP Sheets in Combination with or without Concrete Beams

  • Kang, Thomas H.K.;Kim, Woosuk;Ha, Sang-Su;Choi, Dong-Uk
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • The use of carbon fibers (CF) and glass fibers (GF) were combined to strengthen concrete flexural members. In this study, data of tensile tests of 94 hybrid carbon-glass FRP sheets and 47 carbon and GF rovings or sheets were thoroughly investigated in terms of tensile behavior. Based on comparisons between the rule of mixtures and test data, positive hybrid effects were identified for various (GF/CF) ratios. Unlike the rule of mixtures, the hybrid sheets with relatively low (GF/CF) ratios also produced pseudo-ductility. From the calibrated results obtained from experiments, a new analytical model for the stress-strain relationship of hybrid FRP sheets was proposed. Finally, the hybrid effects were verified by structural tests of concrete members strengthened with hybrid FRP sheets and either carbon or glass FRP sheets.

Study on the Monitoring Method of Concrete Structure Repaired by Carbon Sheets with Optical Fiber Sensors (콘크리트구조물의 탄소섬유시트에 의한 구조 보강시 광섬유 센서를 이용한 모니터링기법에 관한 연구)

  • Kim, Ki-Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.149-152
    • /
    • 2005
  • In order to extend the life time of building and civil infra-structure, nowadays, patch type carbon sheets are widely used as repairing meterials. Repaired concrete columns and beams with carbon sheets gain their stiffness and strength, but they lose toughness and show brittle failure behaviors. Usually, the cracks of concrete structures are visible with naked eyes and the status of the structure in the life cycle is estimated with visible inspection. After repairing of the structure, crack visibility is blocked by repaired carbon sheets. Therefore, structural monitoring after repairing is indispensible and self diagnosis method with optical fiber sensor is very useful. In this paper, peel-out effects is detected with optical fiber sensors and the strain difference between main structure and repaired carbon sheets when they separate each other.

  • PDF

Effect of Multi-Layer Carbon Fiber Sheet Used for Strengthening Reinforced Concrete Beams

  • You Young-Chan;Choi Ki-Sun;Kim Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.149-155
    • /
    • 2005
  • The purpose of this study is to investigate the flexural strengthening effects of CF(Carbon Fiber) sheet for the full-scale RC beams with multi-layer CF sheets. The partial strength reduction factors of CF sheets are suggested from the full-scale RC beams tests strengthened with multi-layer CF sheets up to six layers as well as material tests. From the material tensile tests, it was observed that the average tensile strengths of CF sheets per layer are decreased as the number of CF sheets is increased. Also the steep strength reductions of CF sheets in material test results at rupture are observed compared with the structural tests results for the full-scale RC beams strengthened with multi-layer CF sheets. Finally, the partial strength reduction factors far CF sheets up to six layers are suggested considering the effects of multi-layer and unit weight of CF sheets.

Shear Failure Behaviour of Reinforced Concrete Deep Beam Strengthened by Carbon Fiber Sheets (탄소섬유시트로 보강된 춤이 큰 철근콘크리트 보의 전단파괴거동(剪斷破壞擧動))

  • Cho, Su-Je;Son, Sung-Hun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.145-153
    • /
    • 1999
  • The major objective of this study is to investigate experimentally the shear strengthening effect of carbon fiber sheets upon reinforced concrete deep beam and shear failure behavior variation of reinforced concrete deep beam strengthened by carbon fiber sheets. Tests are carried out with 6 specimens were shear failure at first loading tests, and with parameters including the types of shear strengthening of carbon fiber sheets (I type, S type, U type), and plies of sheets (2 ply and 1 ply). From the results of test, analyzed load-deflection of midspan, strain variation of main bars and transverse reinforcement, maximum load capacity of strengthened specimens, and compared with the previous test results.

  • PDF

Flexural Behavior of Reinforced Concrete Beams with Strengthening Length of Carbon Fiber Sheets (탄소섬유쉬트의 보강길이에 따른 R/C보의 휨 거동)

  • Shin, Sung Woo;Ahn, Jong Mun;Lee, Kwang Soo;Ban, Byung Lyul;Yeom, Sung Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.136-141
    • /
    • 1998
  • It is demanded to obtain the design data for bond length of the strengthening carbon fiber sheets. An objectives of this study is to provide preliminary data of rational strengthening design method which is adequate to current domestic status. The present experimental study was performed to evaluate flexural strengthening effects of steel reinforced concrete beams strengthened with carbon fiber sheets. Following conclusions can be extracted. It is revealed that the maximum load carrying capacity is increased up to 9% when the reinforced concrete beams were strengthened with 1-ply of carbon fiber sheet which is half-width of beam. The performance of reinforced concrete sections were improved due to the strengthening carbon fiber sheets on the tensile side of beams. It is believed that the strengthening length of carbon fiber sheets must be provided as (0.5l+3d) to secure the ductile capacity of above three for the flexural strengthening of reinforced concrete beams.

  • PDF

An experimental study for bending behavior of real size RC beams strengthened with carbon fiber sheets (탄소 섬유시트로 보강된 실제크기 철근 콘크리트 보의 휨 거동에 대한 실험적 연구)

  • Kim, Seong-Do;Seong, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.574-580
    • /
    • 2009
  • This study is investigate the bending behavior of real size RC beams strengthened with carbon fiber sheets. For experimental study, 1 control beam and 8 strengthened beams of real size(4 NU-beams and 4 U-beams) are tested and compared. NU-beam has not a V-shaped band and V-beam has a V-shaped band. The variables of experiment are composed of the number of carbon fiber sheets, the existence of U-shaped band, and four point loading, etc. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without V-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. For the strengthening method with carbon fiber sheets of the real size RC beams, it is required the finding a solution to the bonding problem.

  • PDF

Effects of Carbon-Fiber Sheets on Lateral Confinement in Columns of RC Buildings in Rural Area (농어촌 지역 RC 건축물 기둥 부재의 탄소섬유시트 횡보강 효과)

  • Kim, Yoon IL;Chun, Hyung Min
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.6 no.3
    • /
    • pp.106-115
    • /
    • 2004
  • In this paper, the compressive strength and ductility enhancement of concrete by lateral confinement of carbon-fiber sheets(CFS) have been studied experimentaly with cylinder specimens and square short columns reinforced externally by CFS. Test variables were amount of lateral reinforcement by CFS and space of hoop bars. Test results showed that lateral reinforcements by carbon-fiber sheets provided lateral confinement successfully for the concrete specimens and were more effective for ductility enhancement than for strength increase, and that the lateral confinement coefficient of cabon-fiber sheets increased according to narrowing the space of hoop bars in the double lateral confinement made by CFS and hoop bars.

  • PDF

Behavior of RC Beams Strengthened with Carbon Fiber SheetsUnder Repeated Loading (단조 반복하중 하의 탄소섬유시트 보강 RC보의 거동에 관한 연구)

  • Park, Jeong Yong;Kim, Seong Do;Cho, Baik Soon;Cheung, Jin Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.183-193
    • /
    • 2006
  • This study deals with the response of reinforced concrete beams strengthened with carbon fiber sheets. Test beams are subjected to static loading and repeated loading. Based on the static test results of the RC beams strengthened with carbon fiber sheets, repeated loading tests are performed. The variables of repeated loading test are composed of the number of carbon fiber sheets, the existence of U-shaped band at the end for anchoring, and loading rate of repeated loading, etc. Test results show the flexural behavior, the characteristics of strength, the characteristics of ductility, the change of flexural rigidity, and the amount of energy loss of RC beams under monotonic incremental loading and repeated loading. The failure strain of carbon fiber sheets is also estimated under repeated loading. From the experimental results, this work presents a basis of the data needed to analyze and design the static and dynamic flexural response of RC beams strengthened with carbon fiber sheets.

Characterization of Graphene Sheets Formed by the Reaction of Carbon Monoxide with Aluminum Sulfide

  • Yoon, Il-Sun;Kim, Chang-Duk;Min, Bong-Ki;Kim, Young-Ki;Kim, Bong-Soo;Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3045-3048
    • /
    • 2009
  • Graphene sheets formed by the reaction of carbon monoxide (CO) with aluminum sulfide ($Al_2S_3$) at reaction temperatures ${\leq}$ 800 $^{\circ}$ were characterized by X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The graphene sheets, formed as CO was reduced to gaseous carbon by the reaction with $Al_2S_3$, in the temperature range 800 - 1100 $^{circ}C$, did not exhibit their characteristic XRD peaks because of the small number of graphene layers and/or low crystallinity of graphene sheets. Raman spectra of graphene sheets showed that the intensity ratio of the D band to the G band decreased and the 2D band was shifted to higher frequencies with increasing reaction temperature, indicating that the number of graphene layers increased with increasing reaction temperature.