• Title/Summary/Keyword: Carbon Respiration

Search Result 232, Processing Time 0.02 seconds

Determination of Carbon Dioxide Concentration in CO2 Supplemental Greenhouse for Tomato Cultivation during Winter and Spring Seasons (겨울과 봄철의 CO2 시비 토마토 온실에서 온도에 따른 CO2 농도 구명)

  • Su-Hyun Choi;Young-Hoe Woo;Dong-Cheol Jang;Young-Ae Jeong;Seo-A Yoon;Dae-Hyun Kim;Ho-Seok Seo;Eun-Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.416-422
    • /
    • 2023
  • This study was aimed to determine the changes in CO2 concentration according to the temperatures of daytime and nighttime in the CO2 supplemental greenhouse, and to compare calculated supplementary CO2 concentration during winter and spring cultivation seasons. CO2 concentrations in experimental greenhouses were analyzed by selecting representative days with different average temperatures due to differences in integrated solar radiation at the growth stage of leaf area index (LAI) 2.0 during the winter season of 2022 and 2023 years. The CO2 concentration was 459, 299, 275, and 239 µmol·mol-1, respectively at 1, 2, 3, and 4 p.m. after the CO2 supplementary time (10:00-13:00) under the higher temperature (HT, > 18℃ daytime temp. avg. 31.7, 26.8, 23.8, and 22.4℃, respectively), while it was 500, 368, 366, 364 µmol·mol-1, respectively under the lower temperature (LT, < 18℃ daytime temp. avg. 22.0, 18.9, 15.0, and 13.7℃, respectively), indicating the CO2 reduction was significantly higher in the HT than that of LT. During the nighttime, the concentration of CO2 gradually increased from 6 p.m. (346 µmol·mol-1) to 3 a.m. (454 µmol·mol-1) in the HT with a rate of 11 µmol·mol-1 per hour (240 tomatoes, leaf area 330m2), while the increase was very lesser under the LT. During the spring season, the CO2 concentration measured just before the start of CO2 fertilization (7:30 a.m.) in the CO2 enrichment greenhouse was 3-4 times higher in the HT (>15℃ nighttime temperature avg.) than that of LT (< 15℃ nighttime temperature avg.), and the calculated amount of CO2 fertilization on the day was also lower in HT. All the integrated results indicate that CO2 concentrations during the nighttime varies depending on the temperature, and the increased CO2 is a major source of CO2 for photosynthesis after sunrise, and it is necessary to develop a model formula for CO2 supplement considering the nighttime CO2 concentration.

Studies on the Nitrogenous Utilization and Basal Metabolism of Korean Native Goat (한국(韓國) 재래산양(在來山羊)의 질소대사(窒素代謝) 및 기초대사량(基礎代謝量)에 관(關)한 연구(硏究))

  • Oh, Hong Rock
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.2
    • /
    • pp.546-555
    • /
    • 1982
  • To evaluate the digestibility and absorbability of proteins, and the rates of energy and nitrogen(N) metabolism of the Korean native goats, studies were carried out with open type respiration apparatus based on the nitrogen-carbon method. The results on the nitrogen retention and the metabolic rate of energy, which was obtained with one male (10-month-old) and one female (24-month-old) goats, both weighing ${\simeq}20kg$, are summarized as follows. 1. When the goats were fed ad libitum the medium quality orchard grass hay, they consumed hay about 0.66 to 0.92% of body weight per day. The hay intake was remained the same even when high quality hay was provided. This amount of hay intake was relatively lower than that of dairy goat and sheep. It was believed to be partly due to the change in feeding enviroment. When fed with hay and soybean meal together, the goats ate hay about 1.06% and soybean meal about 0.60% of body weight, corresponding to 1.66% of body weight as fed basis. 2. The $CO_2$ gas produced from the goat in the open type respiration chamber and absorbed with KOH solution was estimated to be 99~117g/day. The difference in feed intake did not influence the $CO_2$ production; however, these seems to be a linea relationship between body weight and $CO_2$ production. 3. When fed orchard grass hay only, the goats showed protein digestibility of 24~41%. The protein digestibility incresed to 58.2% when fed hay and soybean meal together. A negative nitrogen balance(-0.16g N/day) was observed with goats fed 11.53g N originated from 212g hay and 150g soybean meal. Converting that nitrogen ingested to a crude protein, the amount of crude protein intake by the goats per day was 77.9g compared to 40~45g N known to be required in a day by goat weighing 20kg, indicating that the extra protein ingested was metabolized to provide energy. 4. When the male and female goats comsumed 624 kcal gross energy and 824 kcal gross energy by consuming 158g and 213g of hay, respectively, the digestible energy intake was calculated to be 260kcal for the male and 199kcal for the female goat. The daily heat production of male and female goats were 338kcal and 334kcal, respectively, when fed hay only. However, the female goat fed 212g hay and 150g soybean meal produced about 591kcal per day. Consequently, the energy requirment of the Korean native goats weighing ${\simeq}20kg$ was concluded to be $${\geq_-}$$600kcal net energy per day. 5. The fasting heat product ion of a male goat weighing 27.7kg was 412kcal per day when fasted for 2~3 days. When fasted for 3~4 days, the value decresed to 240kcal. The enviromental temperatures during the expreimental period were ranged from 19 to $34.5^{\circ}C$. The goats seemed to be panting when the chamber temperature rose to $32^{\circ}C$ or above. 6. When fed low levels of dietary protein, serum protein levels of the goats were decresed slightly ($${\leq_-}$$10%); however, urea content in the serum was observed to decrese to a great extent (3X).

  • PDF