• Title/Summary/Keyword: Carbon Respiration

Search Result 232, Processing Time 0.023 seconds

Nutrient Digestibility and Greenhouse Gas Emission in Castrated Goats (Capra hircus) Fed Various Roughage Sources (조사료원 종류가 거세 염소(Capra hircus)의 영양소 소화율 및 온실가스 발생량에 미치는 영향)

  • Na, Youngjun;Hwang, Seokjin;Choi, Yongjun;Park, Geetae;Lee, Sangrak
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.1
    • /
    • pp.39-43
    • /
    • 2018
  • The objective of this study was to determine the effect of various roughage sources on nutrient digestibility and enteric methane ($CH_4$), and carbon dioxide ($CO_2$) production in goats. Four castrated black goats ($48.5{\pm}0.6kg$) were individually housed in environmentally controlled respiration-metabolism chambers. The experiment design was a $4{\times}4$ balanced Latin square design with 4 roughage types and 4 periods. Alfalfa, tall fescue, rice straw, and corn silage was used as representative of legume, grass, straw, and silage, respectively. Dry matter digestibility was higher (p < 0.001) in corn silage than in alfalfa hay. Dry matter digestibility of alfalfa hay was higher than those of tall fescue or rice straw (p < 0.001). Neutral detergent fiber digestibility of tall fescue was lower (p < 0.001) than those of alfalfa, rice straw, or corn silage. Daily enteric $CH_4$ production and the daily enteric $CH_4$ production per kilogram of $BW^{0.75}$, dry matter intake (DMI), organic matter intake (OMI), digested DMI, and digested OMI of rice straw did not differ from those of tall fescue but were higher (p < 0.001) than those of alfalfa or corn silage. Roughage type had no effect on enteric $CO_2$ emission in goats. Straw appeared to generate more enteric $CH_4$ production than legume or silage, but similar to grass.

Biodegradation of Medium-chain-length Polyhydroxyalkanoates by Pseudomonas sp. RY-1 (Pseudomonas sp. RY-1에 의한 Medium-chain-length Polyhydroxyalkanoates의 생분해)

  • 류강은;김영백;양영기;이영하
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.84-90
    • /
    • 2000
  • Biodegradation of vanous medium-chain-length polyhydroxyalkanoates (MCL-PHAs) by an extracellular depolymerase system from Pseudomonas sp. RY-1 was investigated under laboratoly conditions. The degradation rate of the polymers was determined by quantitative clem zone technique, enzyme (turbidity) assay, and respirometry assay. Although the enzyme system secreted by Pscudomor~as sp. RY-1 was capable of degrading all MCL-PHAs tested. its secretion was influenced by the availability of secondary carbon sources. The rate of enzymatic degradation of MCL-PHAs was dependent upou the monomeric composition of the polyesters and reduced as the chain lengths of the monomer m t s in the polyesters increased. MCL-PHAs containing C-even monomer units showed faster degradation rate than MCL-PHAs containing C-odd monomer units. Respiration rates of MCL-PHAs with C-even monomer uuts were also much faster than those of MCL-PHAs with C-odd monomer units. The degmdation rate of MCL-PHAs bearing unsaturated substituents was faster than that of mcl-PHAs without functional substituents, which is suggesting the correlation between the degradation rate and the crystallinity of MCL-PHAs.

  • PDF

Growth, Dry Matter Partitioning and Photosynthesis in North American Ginseng Seedlings

  • Proctor, John T.A.;Palmer, John W.;Follett, John M.
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.175-182
    • /
    • 2010
  • North American ginseng seedlings (Panax quinquefolius L.) were grown in pots in heated greenhouses, in a cool greenhouse, or in the field, in 11 experiments at various times over 16 years. Crop establishment, dry matter partitioning, photosynthesis, radiation use efficiency and carbon budget were measured and/or calculated in some years. Once the seedling canopy, of about $20\;cm^2$ per seedling, and a leaf area index of 0.37, was established, about 40 days after germination, full canopy display lasted about 87 days. Only 16.6% of the incoming solar radiation was intercepted by the crop, the remainder falling on the mulched soil surface. Total and root dry matter accumulations in the cool greenhouse and in the field were about double that in the heated greenhouses. Partitioning of dry matter to roots (economic yield or harvest index) in the cool greenhouse and in the field was 73% whereas it was 62.5% in the heated greenhouses. The relationship between root dry matter and radiation interception during the full canopy period was linear with growth efficiencies of $2.92\;mg\;MJ^{-1}$ at 4.8% of incoming radiation and $0.30\;mg\;MJ^{-1}$ at 68% of incoming radiation. A photosynthetic rate of $0.39\;g\;m^{-2}\;h^{-1}$ was attained at light saturation of about $150\;{\mu}mol\;m^{-2}\;s^{-1}$ (7.5% of full sunlight); dark respiration was $0.03\;g\;m^{-2}\;h^{-1}$, about 8.5% of maximum assimilation rate. Estimates of dry matter accumulation by growth analysis and by $CO_2$ uptake were similar, 6.21 vs. 7.62 mg $CO_2$, despite several assumptions in $CO_2$ uptake calculations.

Estimation of Net Community Production Based on O2/Ar Measurements (O2/Ar 관측에 기반한 순군집생산량 추정 연구 동향)

  • HAHM, DOSHIK;LEE, INHEE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.49-62
    • /
    • 2018
  • Net community production (NCP), defined as the difference between net primary production and respiration of heterotrophs, has been used as a measure of oceanic biological carbon pump. This paper summarizes the theoretical background and experimental methods for the estimation of NCP based on $O_2/Ar$ measurements ($O_2/Ar-NCP$). The high frequency measurements of $O_2/Ar-NCP$ (<1 min) is a significant enhancement over the conventional measures of biological pump, such as new production and export production. This paper also introduces some of important works as to the comparison between $O_2/Ar-NCP$ and other measures of biological pump, the distributions of $O_2/Ar-NCP$ in the oceans, and the correlation of $O_2/Ar-NCP$ with various oceanic parameters, including community structures.

Developing a Model for Estimating Leaf Temperature of Cnidium officinale Makino Based on Black Globe Temperature (흑구온도를 이용한 천궁 엽온 예측 모델 개발)

  • Seo, Young Jin;Nam, Hyo Hoon;Jang, Won Cheol;Lee, Bu Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2018
  • Background: The leaf temperature ($T_{LEAF}$) is one of the most important physical parameters governing water and carbon flux, including evapotranspiration, photosynthesis and respiration. Cnidium officinale is one of the important folk medicines for counteracting a variety of diseases, and is particularly used as a traditional medicinal crop in the treatment of female genital inflammatory diseases. In this study, we developed a model to estimate $T_{Leaf}$ of Cnidium officinale Makino based on black globe temperature ($T_{BGT}$). Methods and Results: This study was performed from April to July 2018 in field characterized by a valley and alluvial fan topography. Databases of $T_{LEAF}$ were curated by infrared thermometry, along with meteorological instruments, including a thermometer, a pyranometer, and an anemometer. Linear regression analysis and Student's t-test were performed to evaluate the performance of the model and significance of the parameters. The correlation coefficient between observed $T_{LEAF}$ and calculated $T_{BGT}$ obtained using an equation, developed to predict $T_{LEAF}$ based on $T_{BGT}$ was very high ($r^2=0.9500$, p < 0.0001). There was a positive relationship between $T_{BGT}$ and solar radiation ($r^2=0.8556$, p < 0.0001), but a negative relationship between $T_{BGT}$ and wind speed ($r^2=0.9707$, p < 0.0001). These results imply that heat exchange in leaves seems to be mainly controlled by solar radiation and wind speed. The correlation coefficient between actual and estimated $T_{BGT}$ was 0.9710 (p < 0.0001). Conclusions: The developed model can be used to accurately estimate the $T_{Leaf}$ of Cnidium officinale Makino and has the potential to become a practical alternative to assessing cold and heat stress.

A study on Measurement and Improvement of Indoor Air Quality in Dental Clinic

  • Choi, Mi-Suk;Ji, Dong-Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.143-149
    • /
    • 2018
  • The purpose of this study is to propose a management method to maintain the pleasant indoor air quality of the dental clinic by measuring and analyzing the indoor air quality of the dental clinic. The measurement was conducted in two rooms, a lobby where many residents stay in the reception room for waiting for medical treatment, and a VIP room where treatment activities are mainly performed. Measurement items are Temperature, Humidity, $CO_2$, CO, $NO_2$, $CH_2O$, VOC, $PM_{10}$ and measurement were taken on April 27, 2018. As a result of analyzing the temperature and humidity of the dental clinic, it was analyzed that the average indoor temperature was maintained at $25^{\circ}C$ and the humidity was kept at around 50%, maintaining proper indoor temperature and humidity environment. $CO_2$ was 855ppm in the VIP Room, which satisfied the maintenance standard. In the case of the lobby, it was analyzed to be 1,160ppm, which exceeded the maintenance standard and it is judged that the carbon dioxide generated by the respiration of the people staying in the lobby is the main reason. The mean concentration of formaldehyde in the VIP room was analyzed as $436{\mu}g/m^3$, exceeding the maintenance standard, and $2,100{\mu}g/m^3$ for the VOC exceeded the recommended standard. It was analyzed that the concentration was relatively higher due to the use of disinfectant and other drugs. The mean concentration of PM-10 in the lobby was analyzed as $65{\mu}g/m^3$ and it was analyzed that it satisfied the maintenance standard. To maintain a pleasant indoor air quality in a dental clinic it is necessary to minimize the effects of formaldehyde, VOC, $CO_2$ in the VIP rooms and lobby. For this purpose, the entire ventilation system and air purification system of the dental clinic should be installed. In case of the VIP room, local exhaust ventilation should be installed and workers should wear personal protective equipment.

Effect of Nutrient Supply Cut-off Periods Before Harvest on Storability of Chicon (수확 전 단수처리가 치콘 저장성에 미치는 영향)

  • Jung, Hyun-Jin;Choi, In-Lee;Son, Jin-Sung;Seo, Hyun-Taek;Won, Jae-Hee;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.406-411
    • /
    • 2011
  • This study was conducted to find out the effect of cut-off period (0 hour, 3 hours, 6 hours, 12 hours, and 24 hours) to supply nutrient solution for chicon forcing at that was predrying treatment on the storability of chicon. The cut-off treatment increased dry matter rate, respiration rate, and ethylene production rate. The dry matter rate of chicon increased, as the cut-off period increased, but the respiration rate and ethylene production rate of chicon was highest in 12 hours and 6 hours cut-off treatment, respectively, and then their rates decreased, as the cut-off period prolonged. The weight loss at cut-off 6 hours treatment was lower than other treatments during $10^{\circ}C$ storage temperature. The cut-off 6 hours treatment showed higher carbon dioxide and oxygen concentration in 10,000 cc/$m^2$/day/atm oxygen permeability film package during storage period than control and showed a little predrying effect but was not statistically significant. At $4^{th}$ day, the ethylene concentration reached higher than other storage day and after that decreased but was not statistically significant. The quality of chicon for 3 hours, 6 hours, 24 hours cut-off treatments on storability showed higher than other treatments, accordingly. The 6 hours cut-off treatment showed the inhibited effect of the degree of browning of chicon cutting plane. The effect of 6 hours cut-off treatment on storability of chicon showed proper predrying effect, reduced moisture loss and browning inhibition apparently during $10^{\circ}C$ storage.

Seasonal Variations of Soil CO2 Efflux Rates and Soil Environmental Factors in Pinus densiflora and Quercus variabilis Stands (소나무와 굴참나무 임분의 토양 환경요인과 토양 이산화탄소 방출의 계절적 변화)

  • Baek, Gyeongwon;Jo, Chang Gyu;Kim, Choonsig
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.120-126
    • /
    • 2016
  • This study was carried out to examine the relationships between seasonal variations of soil $CO_2$ efflux rates and soil environmental factors in matured Pinus densiflora and Quercus variabilis stands in the Wola national experimental forests, southern Korea. Soil $CO_2$ efflux rates were measured monthly from March 2015 to February 2016. Mean soil $CO_2$ efflux rates during the study period were significantly higher in the Q. variabilis ($mean{\pm}standard$ error; $2.27{\pm}0.22{\mu}mol\;m^{-2}s^{-1}$) than in the P. densiflora ($1.63{\pm}0.12{\mu}mol\;m^{-2}s^{-1}$) stands. Mean soil water content and pH were also significantly higher in the Q. variabilis ($26.96{\pm}0.93%$, pH 5.19) than in the P. densiflora ($21.32{\pm}0.89%$, pH 4.87) stands, while soil temperature was not significantly different between the P. densiflora ($13.92{\pm}0.67^{\circ}C$) and in the Q. variabilis ($13.52{\pm}0.70^{\circ}C$) stands. $Q_{10}$ values were higher in the Q. variabilis (3.35) than in the P. densiflora (2.72) stands. The results indicate that soil $CO_2$ efflux rates in Q. variabilis stand could be more sensitive by the change of soil temperature compared with P. densiflora stand under a similar site environmental condition.

Experimental Studies of the Blood Gas Transport during Normothermic Hemodilution Perfusion (상온하 혈액희석 체외순환에 있어서 혈액 GAS 동태에 관한 실험적 연구)

  • 박희철
    • Journal of Chest Surgery
    • /
    • v.13 no.2
    • /
    • pp.85-91
    • /
    • 1980
  • Extracorporeal circulation by hemodilution technique has been currently used with its clinical safety and good peripheral tissue perfusion in open heart surgery. There is no doubt that $O_{2}$ carrying capacity of the blood is disturbed by decreased hemoglobin level resulting from hemodilution of the circulating blood. From the view point of the blood gas exchange, these experimental studies were undertaken to determined the sate limit of hemodilution in the condition of cardiopulmonary bypass with a constant perfusion flow rate. Twelve adult mongrel dogs weighing 10 to 13 Kg. were anesthetized with pentobarbital and then respiration was controlled with Harvard volume respirator using room air. The cardiopulmonary by pass was performed by use of Sarns heart lung machine (console 5000, 5 head and 2 roller pumps) and Travenol pediatric bubble oxygenator. The perfusion rate during bypass was maintained at a constant rate of 80 ml/min/Kg of body weight. The ratio of oxygen gas flow to blood flow was kept in 3 to 1 constantly. International hemodilution was attained by serial blood withdrawals and immediate infusion of equal volumes of diluants composed of Ringer's lactate, 5% dextrose in water and 25% mannitol solution, proportionally 60%, 30%, and 10%. Arterial and venous blood samples were obtained between 15 and 20 minutes following each hemodilution. Hematocrits and hemoglobin values, $PO_{2}$, $PCO_{2}$ and pH were measured. Oxygen and carbon dioxide contents oxygen consumption and carbon dioxide elimination were calculated groups according to different hematocrit values and the correlations were evaluated. Result were as follows. 1. the arterial $O_{2}$ tension and $O_{2}$ saturation were maintained at the physiological level irrespective of the hematocrit value. 2. The venous $O_{2}$ tension and $O_{2}$ saturation showed a tendency to decline with the decrease in hematocrit value and positive correlation between them (r = +0.49, r = +0.76), The mean values of venous $O_{2}$ tension and $O_{2}$ saturation, however, were not decreased when the hematocrit levels were lower than 20%. 3. The arterial $O_{2}$ content declined lineally in proportion to the fall of hematocrit level with a positive correlation between them (r = +0.95). 4. The venous $O_{2}$ contents were decreased gradually as the hematocrit value decreased with positive correlation between them ( r =+0.89). The trend of diminution of venous $O_{2}$ content, however, was became low according to progressive decrease of hematocrit level. 5. Systemic oxygen consumption was in higher range than $O_{2}$ requirement of basal metabolism when the hematocrit value was above 20%, but abruptly decreased when the hematocrit value became to below 20%. 6. The arterial $CO_{2}$ tension and $CO_{2}$ content showed trend of increasing with progressive decrease of hematocrit value but exhibited a rather broad range and there was no relationship between those value and the hematocrit value. 7. The venous $CO_{2}$ tension and $CO_{2}$ content have also no correlation with change of Ht. value but related directly to those value of arterial blood with positive correlation between them (r = +0.78, r = +0.95_. 8. A-V difference of $CO_{2}$ content and $CO_{2}$ elimination wasnot significantly influenced by Ht. value. From the results, we obtained that feasible limit in inteneional hemodilution is above the hematocrit value of 20% under the given experimental condition.

  • PDF

Comparison of Storability of Fresh Parsley Grown in Different Seasons in MA Storage (재배시기에 따른 파슬리의 MA저장시 저장성 비교)

  • Yang, Eun-Mi;Park, Kuen-Woo;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.16 no.1
    • /
    • pp.67-71
    • /
    • 2007
  • This study was conducted to find out the influence of cultivation season for fresh parsley in modified atmosphere storage. As the qualities of fresh parsley grown in different seasons; autumn, winter, summer were compared, the chlorophyll and vitamin C showed the highest content in autumn and winter cultivation, respectively, but the firmness was the highest in summer cultivation treatment. These fresh parsleys grown in different seasons packaged with 0.04mm ceramic film and stored at $0^{\circ}C$. The shelf life of these parsleys were 84 days in winter cultivation treatment, while parsleys cultivated in autumn and summer were able to be stored for 77 days and 56 days, respectively. The fresh weight loss of parsley was much more higher in summer than in both autumn and winter cultivation treatments. The carbon dioxide and ethylene contents in packages in summer were more than twice as high in autumn and winter cultivation treatment. There were not different between autumn and winter cultivation treatment in the two kinds of gas contents. This result should be caused by higher field heat that increased a respiration remarkably during the early storage. The highest field heat produced by summer cultivation resulted in remarkable decreases of firmness, chlorophyll and vitamin C during MA storage. As the results, the fresh parsley showed highest storability in winter cultivation treatment. The field heat of fresh parsley should be eliminated just after harvest for a long term storage.