• Title/Summary/Keyword: Carbon Material

Search Result 3,761, Processing Time 0.029 seconds

Analysis of Densification Process of Carbon/Carbon Composites with Pitch as an Impregnant

  • Oh, Seh-Min;Park, Yang-Duk
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.240-244
    • /
    • 1998
  • The analytical method was developed to calculate efficiency of densifying carbon/carbon (C/C) composites using coal tar pitch as a matrix precursor at each cyle. Three factors were defined in analyzing the densification process: impregnation efficiency, retention efficiency, and overall densification efficiency. The relationships developed were applied to the experimental results for three densification cycles of C/C composites with pitches as an impregnant to evaluate the factors which may depend on the impregnant and on the route of carbonization. The impregnation efficiency increased with the repeated process cycles whereas the retention efficiency decreased irrespective of the impregnant and carbonization route. Carbonization route P+A+G, in which pressure carbonizationl (P) and graphitization (G) were done before after atmospheric pressure carboniztion (A) respectively, using impregnant of high carbon yields was the most effective method in densifying C/C composites.

  • PDF

The Electrochemical Properties of Heat Treated Poly(p-phenylene) Based Carbon for Li rechargeable batteries (리튬 2차 전지용 Poly(p-phenyllene) based carbon의 열처리 온도에 따른 전기화학적 특성)

  • 김주승;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.373-377
    • /
    • 1996
  • Carbon materials have become a major interestings of research directed toward the development for anode of lithium batteries of enhanced cell capacity. The purpose of this study is to research and develop poly(p-phenylene)(PPP)-based carbon as a anode of lithium secondary batteries. We have synthesized PPP from benzen by chemical reaction. And then disordered carbon materials were obtained by heat-treating PPP in a nitrogen atmosphere at 40$0^{\circ}C$ to 100$0^{\circ}C$ for 1 hour. The carbon prepared by heat treatment showed a broad x-ray diffraction peak around 2$\theta$=23$^{\circ}$. Electrodes were charged and discharged at a current density of 0.1㎃/$\textrm{cm}^2$. Excellent reversible capacity of 275㎃h/g and 97% of charge/discharge efficiency were observed heat treated PPP-based carbon a $700^{\circ}C$.

  • PDF

Mixing Mechanism of Carbon Black (카본블랙의 혼합메카니즘에 관한 연구)

  • Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.26 no.4
    • /
    • pp.287-295
    • /
    • 1991
  • The mixing process with carbon black is important in the rubber industries. However, it is difficult to characterize the mixing mechanism of the carbon black. The mixing mechanism(distributive mixing and dispersive mixing) was discribed in this paper. The effect of fill factor on the mixing of the carbon black was studied. The dispersive mixing ability increases with increasing fill factor. However, the distributive mixing ability decreases with increasing fill factor. The effect of the carbon black content on the rheological property of the material was studied in this paper. The viscosity of the material increases with increasing the carbon black content. However, the elasticity of the matarial decreases with the carbon black content.

  • PDF

Development of Gold Phosphorus Supported Carbon Nanocomposites

  • Mayani, Vishal J.;Mayani, Suranjana V.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.401-406
    • /
    • 2014
  • Metal-containing carbon nanocomposites have shown significance promise in the area of energy storage, heterogeneous catalysis and material science because of their morphology and combined properties. Phosphorus-doped carbon nanocomposites with gold nanoparticles were developed by applying a simple impregnation method and metal deposition technique. Gold-phosphorus supported carbon nanocomposites with two sized (25 and 170 nm) were prepared from economical petroleum pitch residue as the carbon source using an advanced silica template method. These nanocomposites will lead to the novel applications in the field of material science with the combined properties of gold, phosphorus and carbon. The newly prepared gold phosphorus supported carbon nanocomposites were fully characterized using a range of different physico-chemical techniques.

Properties of Carbon for Application of New Light Source Technology

  • Lee Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.477-479
    • /
    • 2006
  • Carbon films was grown on Si substrates using the method of electrolysis for methanol liquid. Deposition parameters for the growth of the carbon films were current density for the electrolysis, methanol liquid temperature and electrode spacing between anode and cathode. We examined electrical resistance and the surface morphology of carbon films formed under various conditions specified by deposition parameters. It was clarified that the high electrical resistance carbon films with smooth surface morphology are grown when a distance between the electrodes was relatively wider. We found that the electrical resistance in the films was independent of both current density and methanol liquid temperature for electrolysis. The temperature dependence of the electrical resistance in the low resistance carbon films was different from one obtained in graphite.

Technical Status of Carbon Nanotubes Composites (탄소나노튜브 복합체의 기술동향)

  • Lee, Jong-Il;Jung, Hee-Tae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • Carbon nanotubes are considered as the most ideal nano filler in the field of composites with their excellent electrical, mechanical, and thermal properties. Therefore carbon nanotubes composites are increasingly utilized in conductive materials, structural material with high strength and low weight and multifunctional material. This review article describes recent research trend of carbon nanotubes synthesis, modification, various properties of the carbon nanotubes composites and their application. Furthermore the future development direction for the commercialization of carbon nanotubes composites is proposed.

Fabrication of Carbon Film for New Light Source (광원용 탄소박막의 합성)

  • Lee, Sang-Heon;Choi, Young-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.553-554
    • /
    • 2006
  • Carbon films was grown on Si substrates using the method of electrolysis for methanol liquid. Deposition parameters for the growth of the carbon films were current density for the electrolysis. methanol liquid temperature and electrode spacing between anode and cathode. We examined electrical resistance and the surface morphology of carbon films formed under various conditions specified by deposition parameters. It was clarified that the high electrical resistance carbon films with smooth surface morphology are grown when a distance between the electrodes was relatively wider. We found that the electrical resistance in the films was independent of both current density and methanol liquid temperature for electrolysis. The temperature dependence of the electrical resistance in the low resistance carbon films was different from one obtained in graphite.

  • PDF

The nagative carbon electrode properties of hybrid carbon for lithium ion batteries (리튬이온전지용 하이브리드형 탄소의 탄소부극 특성)

  • Yang, Dong-Bok;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1199-1202
    • /
    • 2004
  • 리튬이온전지 음극활질용으로 Hybrid of pitch based graphite impregnating natural graphite와 Hybrid of pitch based carbon impregnating natural graphite로 탄소전극을 제작하여 전기화학적인 특성을 연구하였다. Natural graphite에 pitch based graphite나 pitch based carbon의 혼합은 흑연의 이론용량인 372 mAh/g를 초과하는 고용량을 나타내었다. 이것은 극소공동에 리튬종의 삽입과 탈삽입에 의한 것으로 파악된다. 그러나 충 방전이 계속 진행되면서 방전용량이 급격히 저하되는 현상이 관찰되었다. X-선 회절분석 결과로부터 Hybrid of pitch based carbon impregnating natural graphite 탄소전극에는 amorphous carbon이 상대적으로 다량 존재한다는 것을 확인하였고, 이는 리튬의 삽입된 상태의 전위에 분포가 있어 충 방전시에 완만한 전압의 구배를 만들며, 비가역용량을 증가시키는 요인으로 파악되었다.

  • PDF

Synthesis of Hollow Mesoporous Carbon Nitride Spheres Using Polystyrene Spheres as Template (폴리스티렌 구형입자를 주형으로 이용한 할로우 메조포러스 질화탄소 구형입자의 합성)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.15 no.2
    • /
    • pp.63-68
    • /
    • 2014
  • Hollow mesoporous carbon nitride material with sphere shape was synthesized using polystyrene sphere as template and cyanamide as nitrogen and carbon atom sources via thermal treatment process. The process of the silica removal is not necessary because silica as template is not in use for the synthesis of hollow mesoporous carbon nitride material and any solvents are also not in use. The size of polystyrene spheres was about 170 nm. Hollow diameter and wall thickness were 82 nm and 13 nm, respectively, in hollow mesoporous carbon nitride sphere. Surface area, mesopore size and pore volume of hollow mesoporous carbon nitride material was $188m^2g^{-1}$, 3.8 nm and $0.35cm^3g^{-1}$, respectively. The wall in hollow sphere has graphitic structure. Hollow mesoporous carbon nitride material has potential applications in the area of fuel cell, catalysis, photocatalysis, electroemmision device, etc.

A Study of Characteristic correlation go after the variable of shear process design for Carbon Tool Steel (I) (탄소공구강의 전단설계 변수에 따른 특성 상관관계 연구 (I))

  • Ryu, Gi-Ryoung;Ro, Hyun-Cho;Song, Jae-Son;Park, Chun-dal
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.84-89
    • /
    • 2012
  • In recent years, technology of press plastic working having made remarkable progress. We can say this because it facilitates mass production and have superior performances in machining speed and equivalency of quality than other processing methods. In characteristics of press plastic working, mold manufacturing according to characteristics of each product should be preceded before processing and it has a great influence on machining speed and quality of products and etc according to manufacturing method. Therefore, mold design technology is a critical technology in press plastic working. There are lots of variables in press plastic working according to worked material, mold materials, conditions of heat treatment, clearance and so on. Abrasion of mold depends on these kind of conditions and sheared surface which is crucial for quality of product also depends on them. In this study, we conduct research on abrasion loss of mold according to 8, 10 and 12% of clearance for thickness of 1.0mm of worked material out of mold design variables of the products whose worked materials are high carbon steel and carbon tool steel by a practical experiment.

  • PDF