• Title/Summary/Keyword: Carbon Fiber-PEKK

Search Result 2, Processing Time 0.014 seconds

Characterization of the mechanical behavior of PEKK polymer and C/PEKK composite materials for aeronautical applications below and above the glass transition temperature

  • Pedoto, Giuseppe;Smerdova, Olga;Grandidier, Jean-Claude;Gigliotti, Marco;Vinet, Alain
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.475-493
    • /
    • 2020
  • This paper is focused on the characterization of the thermomechanical properties of semicrystalline poly-ether-ether-ketone (PEKK) and of carbon fiberreinforced thermoplastic based laminated composites (C/PEKK) below and above the glass transition temperature (Tg). Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA) and tensile tests are carried out on both pure PEKK polymer and [(±45)2, +45]s C/PEKK composite samples, showing a significant similarity in behavior. The employment of a simple micromechanical model confirms that the mechanical and physical behavior of the polymer and that of the matrix in the composite are similar.

Analysis of Thermal Degradation Mechanism by Infrared High-speed Heating of CF-PEKK Composites in Hot Press Forming (핫프레스 공정 기반 CF-PEKK 복합재의 근적외선 고속가열에 의한 열적 열화 반응의 메커니즘 분석)

  • Lee, Kyo-Moon;Park, Soo-Jeong;Park, Ye-Rim;Park, Seong-Jae;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.93-97
    • /
    • 2022
  • The application of infrared heating in the hot press forming of the thermoplastic composites is conducive to productivity with high-speed heating. However, high energy, high forming temperature, and high-speed heating derived from infrared heating can cause material degradation and deteriorate properties such as re-melting performance. Therefore, this study was conducted to optimize the process conditions of the hot press forming suitable for carbon fiber reinforced polyetherketoneketone(CF/PEKK) composites that are actively researched and developed as high-performance aviation materials. Specifically, the degradation mechanisms and properties that may occur in infrared high-speed heating were evaluated through morphological and thermal characteristics analysis and mechanical performance tests. The degradation mechanism was analyzed through morphological investigation of the crystal structure of PEKK. As a result, the size of the spherulite decreased as the degradation progressed, and finally, the spherulite disappeared. In thermal characteristics, the melting temperature, crystallization temperature and heat of crystallization tend to decrease as degradation progresses, and the crystal structure disappeared under long-term exposure at 460℃. In addition, the low bonding strength was observed on the degraded surface, and the bonding surfaces of PEKK did not melt intermittently. In conclusion, it was confirmed that the CF/PEKK composite material degraded at 420℃ in the infrared high-speed heating. Furthermore, the spherulite experienced morphological changes and the re-melting properties of thermoplastic materials were degraded.