• 제목/요약/키워드: Carbon Electrode

검색결과 1,332건 처리시간 0.025초

촉매분말법에 의한 PAFC용 다공성 전극제작 (Porous Electrode manufacture by catalyst powdering method for PAFC)

  • 김영우;이주성
    • 에너지공학
    • /
    • 제2권2호
    • /
    • pp.194-199
    • /
    • 1993
  • 인산형 연료전지에서 cathode 및 anode 전극의 반응 면적을 넓혀 전극성능을 향상시키고자 전극 촉매층에 가스 확산로를 도입하였다. 촉매층의 제작은 기체확산로로 이용하고자 제조된, 촉매가 담지되어 있지 않은 PTFE/carbon과 10w/o의 촉매가 담지된 Pt/carbon을 혼합 비율을 달리하면서 촉매 분말법으로 제작하였다. PTFE를 60w/o 담지한 PTFE(60 w/o)/carbon 분말과 Pt(10 w/o)/carbon분말을 7 : 3의 비율로 혼합하여 제조된 전극이 가장 우수한 성능을 보였다. 이들 조성을 변화시키면서 전극의 다공성과 전극성능을 비교 검토하여 본 결과 전극성능은 기체 확산로로 이용되는 macro pore와 전해질의 침투로 이용되는 micro pore 모두가 많이 형성됨에 따라 향상되었음을 알 수 있었다. 이때 전극에 담지된 백금 촉매의 양은 0.2mg/$\textrm{cm}^2$이었으며 PTFE함량은 42w/o이었다. 작동온도 15$0^{\circ}C$, 단자전압 0.7 V에서 전류밀도는 220 ㎃/$\textrm{cm}^2$이었다.

  • PDF

EDLC용 Carbon-PTFE 전극의 제조 및 전기화학적 특성 (Preparation and Electrochemical Performance of Carbon-PTFE Electrode for Electric Double Layer Capacitor)

  • 김익준;이선영;문성인
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.833-839
    • /
    • 2005
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP20 : carbon black : $PTFE\;=\;95-X\;:\;X\;:\;5wt.\%$. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP20 : carton black $PTFE\;=\;80\;:\;15\;:\;5wt.\%$. These behaviors could be explained by the network structure of PTFE fibrils and conducting Paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with $15wt.\%$ of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black $CMC\;=\;70\;:\;30wt.\%$, has exhibited the best rate capability between $0.5\;mA/cm^2\~100\;mA/cm^2$ current density and the lowest ESR.

EDLC용 Carbon-PTFE 전극에서의 도전재 조성 최적화 (Optimum Condition of Conducting Materials on Carbon-PTFE Electrode for Electric Double Layer Capacitor)

  • 이선영;김익준;문성인
    • 한국전기전자재료학회논문지
    • /
    • 제17권9호
    • /
    • pp.973-978
    • /
    • 2004
  • This work describes the effect of conducting materials on the electrochemical performances of electric double layer capacitor. Three kinds of Carbon black, such as Acethylene Black, Super P Black, Ketjen black supplied by Denki Kagaku Kogyo, MMM Carbon, Ketjen Black International Co. respectively, was added in carbon-Polytetrafluoroethylene (PTFE) electrode, which composition is activated carbon : carbon black : PTFE = 80 : 15 : 5 wt.%, and were compared with their electrochemical properties. The electrode with Ketjen Black has showed the lowest resistance than other carbon black, and also exhibited the better rate capability between 0.5 mA/cm$^2$ ∼ 100 mA/cm$^2$ current density in unit cell capacitor. On the other hand, as increasing the composition of Ketjen Black, the specific resistances of electrodes were decreased and Ketjen Black content higher than 15 wt% increased. The best rate capability was obtained at the electrode with 15 wt.% of Ketjen Black in unit cell capacitor. This behaviors would be correlated with the dense structure of electrode.

Ketjenblack 전도제 혼합량에 따른 EDLC용 탄소나노섬유 전극의 특성 (Characterization of Carbon Nanofiber Electrode with different Ketjenblack Conducting Material Mixing Amount Using EDLC)

  • 최원경
    • 한국수소및신에너지학회논문집
    • /
    • 제19권2호
    • /
    • pp.163-170
    • /
    • 2008
  • Carbon nanofibers with nano-sized structures were evaluated as a active material using supercacitor electrode which could store electrochemical energy reversibly. A feasibility of EDLC electrode was estimated with specific surface area measurement by BET method and mesopore structure of carbon nanofiber surface could be explained electrochemical absorption-desorption in aqueous electrolyte. A capacitance of carbon nanofiber electrode was increased gradually, depending on the ratio of Ketjenblack as a conducting material. Ketjen Black $20{\sim}25\;wt.%$ ratio in electrode was observed a suitable amount of conducting material by cyclic voltametry results.

PVDF 접합제 농도 변화와 탄소나노섬유 전극의 전기화학적 특성 (Electrochemical Properties of Carbon Nanofiber Electrode with Different PVDF Binder Concentration)

  • 최원경;조태환
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.446-451
    • /
    • 2007
  • Physicochemical properties of carbon nanofibers were evaluated as a supercacitor electrode materials could store electrochemical energy reversibly. A capacitance of carbon nanofiber electrode was increased gradually, depending on the PVDF binder ratio. A feasibility of EDLC electrode was estimated with specific surface area measurement by BET method and mesopore structure of carbon nanofiber surface could be explained electrochemical absorption-desorption in aqueous electrolyte. PVDF 5 wt.% ratio in electrode was observed a suitable binder amount by CV result.

Electrochemical Dechlorination of 1,2,4-Trichlorobenzene Using a Reticulated Vitreous Carbon Electrode

  • Paeng, Ki-Jung;Lim, Chae-Yun;Lee, Bo-Young;Myung, No-Seung;Rhee Paeng, In-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권9호
    • /
    • pp.1329-1332
    • /
    • 2003
  • Stepwise dechlorination of 1,2,4-trichlorobenzene was observed at a glassy carbon electrode in dimethylformamide containing 0.1 M tetraethylammonium perchlorate. Especially, dechlorination to dichlorobenzene and further to monochlorobenzene or benzene was successfully demonstrated with a porous reticulated vitreous carbon electrode. Electrochemical dechlorination of polychlorobenzenes employing a flow cell with a reticulated vitreous carbon working electrode is also described. Preliminary experiments with a flow cell showed that dechlorination of trichlorobenzene to dichlorobenzene was partially completed while dechlorination to benzene or monochlorobenzene was not successful, suggesting that a flow rate and electrolysis time should be further optimized for the complete electrolysis.

축전식 탈염 공정을 위한 메조포러스 탄소 전극 (Mesoporous Carbon Electrodes for Capacitive Deionization)

  • 이동주;박진수
    • 전기화학회지
    • /
    • 제17권1호
    • /
    • pp.57-64
    • /
    • 2014
  • 다공성의 활성탄소와 상대적으로 입자크기가 더 작은 carbon black을 여러 비율로 혼합하여 다양한 적층배열 구조를 갖는 축전식 탈염용 전극을 제조하였고 활성탄소만 존재하는 전극과 비교 분석하였다. 연구 결과 carbon black의 양이 증가할수록 탄소체의 배열 구조가 조밀해지는 것을 관찰하였고, mesopore가 약 10% 증가하는 것으로 나타났다. 순환전압전류법을 이용하여 축전용량을 살펴보았을 때 carbon black만으로는 이온흡착에 대한 영향이 거의 없지만 활성탄소체와 혼합하여 carbon black의 양이 증가할수록 비축전용량 역시 증가하는 것을 관찰하였다. 최종적으로 셀에 전극을 채용하여 탈염실험을 수행한 결과, carbon black의 양이 가장 많이 함유된 전극의 탈염 성능이 가장 우수하였고, pH의 변화의 폭이 가장 좁았다. 또한, 축전된 전하의 분석을 통해 비페러데이 전류의 비율이 증가하는 것으로 나타나 페러데이 반응에 대한 영향이 감소하는 것을 관찰하였다. 이는 carbon black의 첨가로 전극의 적층배열 구조가 변형함으로써 mesopore의 비율이 증가해 페러데이 반응에 의한 영향이 감소하였고, 탈염 성능 역시 증가하는 것을 알 수 있었다.

전기화학 바이오센서의 전극물질로 응용을 위한 열분해 탄소의 제작 및 특성 연구 (Fabrication and Characterization of Pyrolyzed Carbon for Use as an Electrode Material in Electrochemical Biosensor)

  • 이정아;황성필;곽주현;박세일;이승섭;이광철
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.986-992
    • /
    • 2007
  • This paper presents the fabrication and characterization of carbon films pyrolyzed with various photoresists for bioMEMS applications. To verify the usefulness of pyrolyzed carbon films as an electrode material in an electrochemical biosensor developed by the authors, interactions between avidin and biotin on the pyrolyzed carbon film were studied via electrochemical impedance spectroscopy based on electrostatic interactions between avidin and negatively-charged ferricyanide. The pyrolyzed carbon films were characterized using a surface profiler, a precision semiconductor parameter analyzer, a nanoindentor, scanning electron microscopy, and atomic force microscopy. Amine conjugated biotin was immobilized on the electrode using EDC/NHS as crosslinkers after $O_2$ plasma treatment to enhance functional groups on the carbon electrode pyrolyzed at $1000^{\circ}C$ with AZ9260. The detection of avidin binding with different concentrations in a range of 0.75 nM to $7.5\;{\mu}M$ to the pyrolyzed carbon electrode modified with biotin was carried out by measuring the electrochemical impedance change. The results show that avidin binds to the biotin on the electrode not by non-specific interaction but by specific interaction, and that EIS successfully detects this binding event. Pyrolyzed carbon films are a promising material for miniaturization, integration, and low-cost fabrication in electrochemical biosensors.

Construction of Carbon Paste Coated Wire Ion-Selective Electrode for Chloride and Its Application to Environmental Water Analysis

  • Yong-Kyun Lee;Soo Kil Rhim;Kyu-Ja Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권6호
    • /
    • pp.485-488
    • /
    • 1989
  • A carbon paste coated-wire ion-selective electrode for chloride (carbon chloride-CWE) was constructed using epoxy resin, ion-exchanger and carbon powder as a polymer membrane. Its utility, the composition of a polymer membrane, the response characteristics, and the selectivity were examined and applied to the environmental water analysis. The carbon chloride-CWE was prepared using a silver wire, which was covered with silver chloride and then coated with epoxy resin into which chloride ion-exchanger and carbon powder were previously incorporated in advance. The response of the carbon chloride-CWE was Nernstian for $1.0{\times}10^{-2}-2{\times}10^{-5}$ M chloride and the useful pH range from $10^{-2} M Cl- to 10^{-4} M Cl^-$ was 3.0-9.0. Furthermore, the selectivity of chloride over iodide, bromide, and cyanide was much improved compared with those for a solid state epoxy body chloride electrode and a liquid membrane chloride electrode. The carbon chloride-CWE was applied to determine Cl^-$ in tap and ground water. The obtained results were in good agreement with those by the established methods such as spectrophotometric or other chloride-selective electrode methods.