• Title/Summary/Keyword: Carbon Conversion

Search Result 708, Processing Time 0.033 seconds

An Assessment on Voltage and Power Quality in Load Facility during the Islanding of Residential Fuel Cell System (가정용 연료전지 시스템의 단독운전 시 부하설비의 전압 및 전력품질 평가)

  • Park, Chan-Eom;Jung, Jin-Soo;Han, Woon-Ki;Lim, Hyun-Sung;Song, Young-Sang;Kim, Choon-Sam;Lim, Duk-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1792-1797
    • /
    • 2013
  • Recently, due to the excessive use of fossil fuels, many studies about the fossil fuels such as solar and fuel cell energy source are progressing. Fuel cell system has high energy conversion efficiency. Also, fuel cell system is environmentally friendly system because the carbon emission is almost not occur. Therefore, the fuel cell system is considered as the core technology of in the fields of the future energy and environmental. Fuel cell system has an effect on distribution power system because another power source of other than large power plants. So, fuel cell system can be reason of power quality in the power system. In this paper, we constructed the system for an assessment on Islanding. The system is composed with power source, Impedance coordination load and linear load, fuel cell system. we are performed assessment on voltage and power quality in customer and the distributed power system during the Islanding of residential fuel cell system. In addition, no change in the impedance of power system, we made a islanding condition only using the actual load, As a variation of generation and load current under islanding, an analysis results based on assessment system showed that the power qualities of distribution system became more aggravation as effect of voltage sag and voltage swell phenomena.

Preparation of Amine-functionalized Graphene Fiber and Its Application (아민 분자로 개질된 그래핀 섬유의 제조 및 응용)

  • Lee, Wonoh;Yoon, Sang Su;Um, Moon-Kwang;Lee, Jea Uk
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.265-269
    • /
    • 2015
  • Development of simple and efficient method for large-scale production of mechanically strong and electrically conductive graphene fiber is highly desirable for practical applications, such as fiber-reinforced composites, wearable electronics, and electromagnetic irradiation shielding. Here, we present a facile approach for the preparation of amine-functionalized graphene fibers by simple wet-spinning of diamine-functionalized graphene oxide (GO-$NH_2$), which is used because of its synthetic convenience, good dispersity, and scalable production with low cost. The amine-functionalized graphene fiber shows high electrical and mechanical properties compared to pristine graphene oxide fiber due to the electrostatic interaction between amine groups and electronegative functional groups of graphene oxide.

Estimation of Carrying Capacity in Kamak Bay ( II ) - Estimation of carrying capacity of oyster culture ground - (가막만의 환경용량 산정 ( II ) -굴양식장 환경용량 산정-)

  • CHO Eun-Il;PARK Chung-Kil;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.5
    • /
    • pp.709-715
    • /
    • 1996
  • In order to estimate the carrying capacity of oyster culture ground in Kamak Bay, primary productivity was calculated using the ecosystem model. The allowable maximum oyster production, namely, the carrying capacity of Kamak Bay was estimated by using the annual phytoplankton production and conversion coefficient to oyster meat. On the environmental conditions of oyster culture period from lune, 1994 to March, 1995, phytoplankton production, the allowable maximum oyster production were estimated to be 181,594 tons of carbon and 287,033 tons of oyster meat, respectively. The allowable maximum oyster production was estimated to be 15,443 tons in the actual culture ground where oyster culture facilities are installed in Kamak Bay. In 1994 4,532 tons of actual oyster meat production was equivalent to ra. $29\%$ of carrying capacity, and in 1987 it was 14,592 tons equivalent to ca. $95\%$.

  • PDF

Desulfurization Efficiency of Lime Absorbent in In-Furnace Desulfurization as Fly Ash Binder in Power Plant (발전소 비산재를 결합재로 활용한 로내탈황용 석회 흡수제의 탈황효율)

  • Seo, Jun-Hyung;Baek, Chul-Seoung;Cho, Jin-Sang;Ahn, Ji-Whan;Yoon, Do-Young;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.58-65
    • /
    • 2018
  • For the recycling of coal ash from the domestic circulating fluidized bed boilers, a lime-based sorbent with 0.2~0.4 mm size was prepared by using limestone powder and CFBC fly ash. Mixing a small amount of slaked lime in the lime-based absorbent lead the formation of calcium silicate on the surface of the particle and the strength of absorbent particle was improved. As a result of comparing the desulfurization characteristics, it was found that the conversion rate was about 10% higher than that of commercially available limestone desulfurization used in the furnace, which is confirmed that it can be used as a desulfurization absorbent.

A Study on Effective Green Technology in Relation to the Energy Performance Improvement of Existing Architectural Structures (기존건축물 에너지성능 개선시 효과적인 녹색기술 연구)

  • Kim, Dae-Won;Kim, Young-Il;Chung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.272-279
    • /
    • 2012
  • The emission quota of 26.9% was allocated to the architectural sector according to the greenhouse gas(GHG) emission reduction goal of the government. It has become inevitable to change the architectural structures in a low-energy consumption and sustainable manner for new and existing house. The introduction of various legal systems and deregulation have been attempted to promote the low carbon emission and sustainable energy conversion. Although overall emission reduction goal has been set for 6.7 million units of existing houses, there has been a lack of standards and directions for the emission reduction measures. This study was intended to present the most economic and effective green technology improvement measures based on the investigation into the current conditions through direct visit to the selected architectural structures and the repeated simulation of relevant technical elements.

Characteristics of Electricity Generation by Microbial Fuel Cell for Wastewater Treatment (폐수처리를 위한 미생물연료전지의 전기생산 특성)

  • Kim, Sun-Il;Lee, Sung-Wook;Kim, Kyung-Ryang;Lee, Jae-Wook;Roh, Sung-Hee
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.213-217
    • /
    • 2009
  • Microbial fuel cells (MFCs) have been known as a new alternative energy conversion technology for treating wastewater and producing electricity simultaneously. A MFC converts the chemical energy of the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions. To examine the performance of MFC, in this work, the characteristics of the efficiency of wastewater treatment and generation of electricity was evaluated for sewage. When acetate as a carbon source was added into the sewage, the removal efficiency of COD was increased from 75.7% to 88.2% and the voltage was increased significantly from 0.22 V to 0.4 V. The influence of distance between anode and cathode was examined and the effect of the surface area of anode was investigated under the various external resistances. It was found that the maximum power density was $610mW/m^2$ and power generation was effective when the distance between the electrodes was shorter and the surface area of the anode was smaller.

Production of lactic acid by Lactobacillus paracasei isolated from button mushroom bed

  • Kim, Sun-Joong;Seo, Hye-Kyung;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.11 no.4
    • /
    • pp.187-193
    • /
    • 2013
  • A galactose fermentation bacterium producing lactose from red seaweed, which was known well to compromise the galactose as main reducing sugar, was isolated from button mushroom bed in Buyeo-Gun, Chungchugnamdo province. The lactic acid bacteria MONGB-2 was identified as Lactobacillus paracasei subsp. tolerans by analysis of 16S rRNA gene sequence. When the production of lactic acid and acetic acid by L. paracasei MONGB-2 was investigated by HPLC analysis with various carbohydrates, the strain MONGB-2 efficiently convert the glucose and galactose to lactic acid with the yield of 18.86 g/L and 18.23 g/L, respectively and the ratio of lactic acid to total organic acids was 1.0 and 0.91 g/g for both substrates. However, in the case of acetic acid fermentation, other carbohydrates besides galactose and red seaweed hydrolysate could not be totally utilized as carbon sources for acetic acid production by the strain. The lactic acid production from glucose and galactose in the fermentation time courses was gradually enhanced upto 60 h fermentation and the maximal concentration reached to be 16-18 g/L from both substrates after 48 h of fermentation. The initial concentration of glucose and galactose were completely consumed within 36 h of fermentation, of which the growth of cell also was maximum level. In addition, the bioconversion of lactic acid from the red seaweed hydrolysate by L. paracasei MONGB-2 appeared to be about 20% levels of the initial substrates concentration and this results were entirely lower than those of galactose and glucose showed about 60% of conversion. The apparent results showed that L. paracasei MONGB-2 could produce the lactic acid with glucose as well as galactose by the homofermentation through EMP pathway.

The ABA Effect on the Accumulation of an Invertase Inhibitor Transcript that Is Driven by the CAMV35S Promoter in ARABIDOPSIS

  • Koh, Eun-Ji;Lee, Sung June;Hong, Suk-Whan;Lee, Hoi Seon;Lee, Hojoung
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.236-242
    • /
    • 2008
  • Invertase (${\beta}$-D-fructofuranosidase; EC 3.2.1.26) catalyzes the conversion of sucrose into glucose and fructose and is involved in an array of important processes, including phloem unloading, carbon partitioning, the response to pathogens, and the control of cell differentiation and development. Its importance may have caused the invertases to evolve into a multigene family whose members are regulated by a variety of different mechanisms, such as pH, sucrose levels, and inhibitor proteins. Although putative invertase inhibitors in the Arabidopsis genome are easy to locate, few studies have been conducted to elucidate their individual functions in vivo in plant growth and development because of their high redundancy. In this study we assessed the functional role of the putative invertase inhibitors in Arabidopsis by generating transgenic plants harboring a putative invertase inhibitor gene under the control of the CaMV35S promoter. A transgenic plant that expressed high levels of the putative invertase inhibitor transcript when grown under normal conditions was chosen for the current study. To our surprise, the stability of the invertase inhibitor transcripts was shown to be down-regulated by the phytohormone ABA (abscisic acid). It is well established that ABA enhances invertase activity in vivo but the underlying mechanisms are still poorly understood. Our results thus suggest that one way ABA regulates invertase activity is by down-regulating its inhibitor.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

A study on Property of Emission Gas by the Content Variation of Urea (UREA의 함량 변화에 따른 배출가스 특성분석)

  • Kang, Hyungkyu;Doe, Jinwoo;Hwang, Inha;Im, Jaeheuk;Ha, Jonghan;Na, Byungki
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.24-32
    • /
    • 2015
  • National and international regulations on the exhaust gases of diesel engines are being strengthened, and a study of the combutsion engine and the post-porcessing system are in progress as a variety of ways. There are many techniques for the removal of nitrogen oxide like HC-SCR, LNT, Urea-SCR. And the technical development on the Urea-SCR owing to high conversion efficiency and fuel economy characteristics has being processed. This study investigated the physical/chemical properties of urea according to the change of the urea content, and were analysed the characteristic of exhaust gas. According to the increase of urea content, the contests of biuret aldehyde, phosphate content was increased and the changes of emission quantity of carbon monoxide, hydrocarbons and particulate matter in the exhaust gas was very slight. The emission quantity of NOx was decreased in accordance with increasing the urea content and it was shown to be more than 80 % in the urea solution having more than 30 wt%.