• Title/Summary/Keyword: Carbon Charge behavior

Search Result 45, Processing Time 0.024 seconds

Cycling Behavior of Binder-Free Graphite-Lithium Intercalation Anode In AICI3-EMIC-LiCI-SOCI2 Room-Temperature Molten Salt

  • Koura, Nobuyuki;Minami, Takuto;Etoh, Keiko;Idemoto, Yasushi;Matsumoto, Futoshi
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.178-182
    • /
    • 2002
  • The electrochemical behavior of binder-free carbon anode, comprising of only artificial and natural graphite (AG and NG) particles, for intercalation and deintercalation of lithium ion $(Li^+)$ in aluminum chloride (AICI_3)-I-ethyl­3-methylimidazolium chloride (EMIC)-lithium chloride (LiCl)-thionyl chloride $(SOCI_2)$ room-temperature molten salt (RTMS) was studied. Binder-free carbon electrodes were fabricated using electrophoretic deposition (EPD) method. The binder-free carbon anodes provided a relatively flat charge and discharge potentials $(0\;to\;0.2V\;vs.\;Li/Li^+)$ and current capabilities $(250-340mAh{\cdot}g^{-1})$ for the intercalation and deintercalation of $Li^+$. Stability of the binder-free carbon anodes for intercalation and deintercalation of 50 cycles was confirmed.

Synthesis and Electrochemical Performance of Polypyrrole-Coated Iron Oxide/Carbon Nanotube Composites

  • Kim, Dae-Won;Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.157-160
    • /
    • 2012
  • In this work, iron oxide ($Fe_3O_4$) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and $Fe_3O_4$-decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.

Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method (전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성)

  • Yoon, Jo Hee;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • In this report, polyoxometalte (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth (CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and galvanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: a high areal capacitance ($561mF/cm^2$), a high rate capability (85%), and a good cycling performance (97% retention).

Influence of Carbon Fiber on Corrosion Behavior of Carbon Steel in Simulated Concrete Pore Solutions

  • Tang, Yuming;Dun, Yuchao;Zhang, Guodong;Zhao, Xuhui;Zuo, Yu
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.175-182
    • /
    • 2017
  • Galvanic current measurement, polarization curves, electrochemical impedance spectroscopy and weight loss test were used to study the corrosion behavior of carbon steel before and after carbon fibers coupling to the carbon steel in simulated concrete pore solutions, and the film composition on the steel surface was analyzed using XPS method. The results indicate that passive film on steel surface had excellent protective property in pore solutions with different pH values (13.3, 12.5 and 11.6). After coupling with carbon fibers (the area ratio of carbon steel to carbon fiber was 12.31), charge transfer resistance $R_{ct}$ of the steel surface decreased and the $Fe^{3+}/Fe^{2+}$ value in passive film decreased. As a result, stability of the film decreased and the corrosion rate of steel increased. Decreasing of the area ratio of steel to carbon fiber from 12.3 to 6.15 resulted in the decrease in $R_{ct}$ and the increase in corrosion rate. Especially in the pore solution with pH 11.6, the coupling leads the carbon steel to corrode easily.

Role of Some Benzohydrazide Derivatives as Corrosion Inhibitors for Carbon Steel in HCl Solution

  • Fouda, A.S.;Mohamed, M.T.;Soltan, M.R.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.61-70
    • /
    • 2013
  • Corrosion inhibition of carbon steel in 2M HCl by some benzohydrazide derivatives (I-III) was studied using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques at $30^{\circ}C$. Polarization studies showed that all the investigated compounds are of mixed type inhibitors. Temperature studies revealed a decrease in efficiency with rise in temperature and corrosion activation energies increased in the presence of the hydrazide derivatives, probably implying that physical adsorption of cationic species may be responsible for the observed inhibition behavior. Electrochemical impedance studies showed that the presence of benzohydrazide derivatives decreases the double layer capacitance and increases the charge transfer resistance. The adsorption of these compounds on carbon steel surface was found to obey Temkin's adsorption isotherm. Synergistic effects increased the inhibition efficiency in the presence of halide additives namely KI and KBr. An inhibition mechanism was proposed in terms of strongly adsorption of inhibitor molecules on carbon steel surface.

Impacts of C60-Ionic Liquids (ILs) Interactions and IL Alkyl Chain Length on C60 Dispersion Behavior: Insights at the Molecular Level

  • Wang, Zhuang;Tang, Lili;Wang, Degao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2679-2683
    • /
    • 2014
  • Mechanisms underlying the impacts of interactions between carbon nanoparticles (CNPs) and ionic liquids (ILs) on the physicochemical behavior of CNPs need to be more full worked out. This manuscript describes a theoretical investigation at multiple levels on the interactions of fullerene $C_{60}$ with 21 imidazolium-based ILs of varying alkyl side chain lengths and anionic types and their impacts on $C_{60}$ dispersion behavior. Results show that ${\pi}$-cation interaction contributed to mechanism of the $C_{60}$-IL interaction more than ${\pi}$-anion interaction. The calculated interaction energy ($E_{INT}$) indicates that $C_{60}$ can form stable complex with each IL molecule. Moreover, the direction of charge transfer occurred from IL to $C_{60}$ during the $C_{60}$-IL interaction. Quantitative models were developed to evaluate the self-diffusion coefficient of $C_{60}$ ($D_{fullerene}$) in bulk ILs. Three interpretative molecular descriptors (heat of formation, $E_{INT}$, and charge) that describe the $C_{60}$-IL interactions and the alkyl side chain length were found to be determinants affecting $D_{fullerene}$.

Electrochemical double layer capacitors with PEO and Sri Lankan natural graphite

  • Jayamaha, Bandara;Dissanayake, Malavi A.K.L.;Vignarooban, Kandasamy;Vidanapathirana, Kamal P.;Perera, Kumudu S.
    • Advances in Energy Research
    • /
    • v.5 no.3
    • /
    • pp.219-226
    • /
    • 2017
  • Electrochemical double layer capacitors (EDLCs) have received a tremendous interest due to their suitability for diverse applications. They have been fabricated using different carbon based electrodes including activated carbons, single walled/multi walled carbon nano tubes. But, graphite which is one of the natural resources in Sri Lanka has not been given a considerable attention towards using for EDLCs though it is a famous carbon material. On the other hand, EDLCs are well reported with various liquid electrolytes which are associated with numerous drawbacks. Gel polymer electrolytes (GPE) are well known alternative for liquid electrolytes. In this paper, it is reported about an EDLC fabricated with a nano composite polyethylene oxide based GPE and two Sri Lankan graphite based electrodes. The composition of the GPE was [{(10PEO: $NaClO_4$) molar ratio}: 75wt.% PC] : 5 wt.% $TiO_2$. GPE was prepared using the solvent casting method. Two graphite electrodes were prepared by mixing 85% graphite and 15% polyvinylidenefluoride (PVdF) in acetone and casting n fluorine doped tin oxide glass plates. GPE film was sandwiched in between the two graphite electrodes. A non faradaic charge discharge mechanism was observed from the Cyclic Voltammetry study. GPE was stable in the potential windows from (-0.8 V-0.8 V) to (-1.5 V-1.5 V). By increasing the width of the potential window, single electrode specific capacity increased. Impedance plots confirmed the capacitive behavior at low frequency region. Galvanostatic charge discharge test yielded an average discharge capacity of $0.60Fg^{-1}$.

Phase Formation Behavior and Charge-discharge Properties of Carbon-coated Li2MnSiO4 Cathode Materials for Lithium Rechargeable Batteries (리튬이차전지용 탄소 코팅된 Li2MnSiO4 양극활물질의 상형성 거동 및 충방전 특성)

  • Sun, Ho-Jung;Chae, Suman;Shim, Joongpyo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.143-149
    • /
    • 2015
  • Carbon-coated $Li_2MnSiO_4$ powders as the active materials for the cathode were synthesized by planetary ball milling and solid-state reaction, and their phase formation behavior and charge-discharge properties were investigated. Calcination temperature and atmosphere were controlled in order to obtain the ${\beta}-Li_2MnSiO_4$ phase, which was active electrochemically, and the carbon-coated $Li_2MnSiO_4$ active material powders with near single phase ${\beta}-Li_2MnSiO_4$ could be fabricated. The particles of the synthesized powders were secondary particles composed of primary ones of about 100 nm size. The carbon incorporation was essential to enable the Li ions to be inserted and extracted from $Li_2MnSiO_4$ active materials, and the initial capacity of 192 mAh/g could be obtained in the $Li_2MnSiO_4$ active materials with 4.8 wt% of carbon.

Novel route of enhancing the metal loading in highly active Pt/C electro-catalyst by polyol process (Polyol process를 통한 고비율 백금 담지 촉매 합성)

  • Oh, Hyung-Suk;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.560-563
    • /
    • 2008
  • A modified polyol process is developed to enhance Pt loading during the preparation of Pt/C catalysts. With the help of the zeta potential, the effect of pH on the electrostatic forces between the support and the Pt colloid is investigated. It is shown experimentally that the surface charge on the carbon support becomes more electropositive when the solution pH is changed from alkaline to acidic. However, this change does not affect the electronegative surface charge of Pt colloids already attained and stabilized by glycolate anions. This new behavior caused by the change in the solution pH accounts for the enhanced yield of the process and does not affect the Pt particle size. All our experimental results reveal that this simple modification is a cost effective method for the synthesis of highly Pt loaded Pt/C catalysts for fuel cells.

  • PDF

Effect of Mo-doped LiFePO4 Positive Electrode Material for Lithium Batteries

  • Oh, Seung-Min;Sun, Yang-Kook
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.172-177
    • /
    • 2012
  • Mo-doped $LiFePO_4$ was synthesized via co-precipitation method using sucrose as the carbon source. Structure, surface morphology, and the electrochemical properties of the synthesized olivine compounds were investigated using Rietveld refinement of X-ray diffraction data (XRD), scanning electron microscopy (SEM), and electrochemical charge-ischarge tests. Spherical morphology with the particle size of ${\sim}8{\mu}m$ authenticated the enhanced tap density and volumetric energy density of the synthesized materials. Charge-discharge behavior of $LiFePO_4$ and Mo-doped $LiFePO_4$ cells demonstrated a specific capacity of 130 and 145 mAh $g^{-1}$, respectively. Mo-doped $LiFePO_4$ cells exhibited an excellent discharge capacity at 96 mAh $g^{-1}$ at 7 C-rate.