• Title/Summary/Keyword: Carbon Calculator

Search Result 7, Processing Time 0.019 seconds

Comparative Analysis of Scenarios for Reducing GHG Emissions in Korea by 2050 Using the Low Carbon Path Calculator (저탄소 경로 모형을 활용한 2050년 한국의 온실가스 감축 시나리오 비교 분석)

  • Park, Nyun-Bae;Yoo, Jung-Hwa;Jo, Mi-Hyun;Yun, Seong-Gwon;Jeon, Eui Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.556-570
    • /
    • 2012
  • The Low Carbon Path Calculator is an excel-based model to project greenhouse gas emissions from 2009 to 2050, which is based on the 2050 Pathways Calculator developed by the UK Department of Energy and Climate Change (DECC). Scenarios are developed to reduce GHG emissions in Korea at 50% based on 2005 levels by 2050 using a Low Carbon Path Calculator. They were classified in four different cases, which are high renewable, high nuclear, high CCS and mixed option scenarios. The objectives of this study are to compare scenarios in terms of GHG emissions, final energy, primary energy and electricity generation and examine the usefulness of that model in terms of identifying pathways towards a low carbon emission society. This model will enhance the understanding of the pathways toward a low carbon society and the level of the climate change policy for policy makers, stakeholders, and the public. This study can be considered as a reference for developing strategies in reducing GHG emissions in the long term.

Development of Tree Carbon Calculator to Support Landscape Design for the Carbon Reduction (탄소저감설계 지원을 위한 수목 탄소계산기 개발 및 적용)

  • Ha, Jee-Ah;Park, Jae-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.1
    • /
    • pp.42-55
    • /
    • 2023
  • A methodology to predict the carbon performance of newly created urban greening plans is required as policies based on quantifying carbon performance are rapidly being introduced in the face of the climate crisis caused by global warming. This study developed a tree carbon calculator that can be used for carbon reduction designs in landscaping and attempted to verify its effectiveness in landscape design. For practical operability, MS Excel was selected as a format, and carbon absorption and storage by tree type and size were extracted from 93 representative species to reflect plant design characteristics. The database, including tree unit prices, was established to reflect cost limitations. A plantation experimental design to verify the performance of the tree carbon calculator was conducted by simulating the design of parks in the central region for four landscape design, and the causal relationship was analyzed by conducting semi-structured interviews before and after. As a result, carbon absorption and carbon storage in the design using the tree carbon calculator were about 17-82% and about 14-85% higher, respectively, compared to not using it. It was confirmed that the reason for the increase in carbon performance efficiency was that additional planting was actively carried out within a given budget, along with the replacement of excellent carbon performance species. Pre-interviews revealed that designers distrusted data and the burdens caused by new programs before using the arboreal carbon calculator but tended to change positively because of its usefulness and ease of use. In order to implement carbon reduction design in the landscaping field, it is necessary to develop it into a carbon calculator for trees and landscaping performance. This study is expected to present a useful direction for ntroducing carbon reduction designs based on quantitative data in landscape design.

A Study on the Development of Planting Design Guidelines for Outdoor Space of Apartment for Increased Carbon Absorption (탄소흡수량 증대를 위한 아파트 외부 공간 식재 가이드라인 개발에 관한 연구)

  • Kang, Yonju;Baek, Kyuli;Jung, In kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.5
    • /
    • pp.65-82
    • /
    • 2024
  • As interest in carbon absorption increases to respond to the global climate crisis, the environmentally friendly design of exterior spaces of apartments, which account for 63.5% of all residences in Korea, is required. In this study, a planting design guideline for increasing the amount of carbon adsorption in the space outside apartments was developed. This is meaningful in suggesting a planting design strategy according to the type of space with the aim of presenting a realistic solution to respond to the climate crisis and carbon output in the domestic construction industry. A carbon calculator was used for the calculation of carbon absorption for trees, and previous research data was used for shrubs and flowers. Based on the laws and regulations related to the exterior space of apartments and design guidelines for each construction company, major landscape spaces were extracted and categorized into central plazas, peripheral forests, waterfront spaces, play and exercise spaces, and small gardens. Apartment complexes in Seoul and the Seoul metropolitan area among the 2021 and later winners of the 'Livable Apartment Award' were selected, and the carbon uptake of landscape trees by space was calculated for more than 1,000 apartments. Based on this, a guideline for planting by space was prepared to increase carbon adsorption. As a result of applying the planting guidelines to the sample target site, the carbon adsorption amount increased by about 5-63% compared to the existing design, and it converged toward the target carbon adsorption amount. This was determined by confirming that the amount of carbon adsorption could increase when planting guidelines were applied. This study is significant for establishing design guidelines by summarizing the carbon absorption data of landscape trees, but it is necessary to secure data on all landscape materials, not just trees, for future carbon reduction design in the landscape field. By presenting practical planting data and design guidelines that can improve carbon absorption in the design and construction of exterior space planting in apartment complexes, this study is significant as basic research that can be utilized as indicators and guidelines for future carbon absorption-related design and is expected to contribute to climate change response in urban environments.

Alkalinity Measurement of Groundwater using Gran Titration Method (Gran적정법을 이용한 지하수 알칼리도분석방법)

  • Kim, Kangjoo;Lee, Jin-Won;Choi, Seung-Hyun;Kim, Seok-Hwi;Kim, Hyunkoo;Hamm, Se-Yeong;Kim, Rak-Hyeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • Alkalinity is an essential parameter for understanding geochemical processes and calculating partial pressure of $CO_2$, dissolved inorganic carbon, and mineral saturation indices. The Gran Titration Method (GTM) is one of the most accurate methods for measuring the alkalinity in water samples. However, this method has not been widely employed in measuring groundwater alkalinity in Korea, probably due to inadequate and insufficient understanding of the method. In this regard, this article was prepared to introduce GTM and related know-hows learned from the authors' experiences in measuring alkalinity. This paper also introduces a MS Excel-based alkalinity calculator as a handy tool for GTM.

Power Generation Loss Characteristics Analysis for O&M Management of Floating Offshore Wind Farms (부유식 해상풍력 유지보수 관리 적용을 위한 발전손실량 특성 분석)

  • Seong-Bin Mun;Song-Kang An;Won-gyeong Seong;Young-Jin Oh
    • Journal of Wind Energy
    • /
    • v.13 no.1
    • /
    • pp.5-14
    • /
    • 2022
  • Currently, the Korean government is driving the construction of large-scale floating offshore wind farms to increase domestic renewable energy generation and decrease carbon emissions. In offshore wind farms, maintenance approaches can be limited more often than onshore wind farms by marine weather conditions (wave height, etc.). Therefore, maintenance planning optimization is more important to minimize maintenance costs and power generation loss by downtime. Additionally, the power generation of a wind farm is affected by wind speed as well as wind direction because of the wake effect, so it is possible that power generation loss by downtime is also dependent on combinations of weather conditions (wind speed and direction) and the location of wind turbines for maintenance. In this study, the effects of the wind conditions and the locations of tripped wind turbines on power generation loss were explored for a hypothetical floating offshore wind farm. In order to calculate the power generation of a wind farm, a wake effect calculator was developed based on Jensen's formula. Then, a simple methodology of determining maintenance priorities that minimize power generation loss was proposed.

A Comparison of Dose-Response Assessments for CMR Materials in the Workplace (작업장에서 취급하는 CMR물질의 용량반응평가 방법 비교)

  • Lee, Kyung Hwa;Choi, Han Young;Kim, Chi Nyon;Roh, Young Man;Choi, Hee Jin;Park, Chae Ri
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • Objectives: Currently, there is only limited knowledge regarding the hazard of low-level exposure to CMR materials in workplaces. To overcome this limitation, a reference concentration for workers($RfC_w$) from among the risk assessment tools proposed by the US EPA is widely used to set a provisional workplace exposure level(PWEL) for CMR materials for which there are no established Korea Occupational Exposure Limits(KOELs) or subjective chemicals for work environment measurements as regulated by Korea Ministry of Employment and Labor(KMOEL). A simple European calculator of derived no effect level(SECO-DNEL) as proposed by REACH can also be used in place of $RfC_w$ to set the PWEL for chemicals. This study was performed to test the acceptability of using SECO-DNEL as an alternative to $RfC_w$ when setting a PWEL for low-level exposures. Methods: The $RfC_w$ and DNEL for the five CMR materials of dinitrogen oxide, catechol, 2-phenoxy ethanol, carbitol, and carbon black were calculated using the dose-response assessments of the US EPA for $RfC_w$ and REACH guidance for SECO-DNEL, respectively. They were compared using paired t-tests to determine the statistical differences between them. Results: For the five chemicals, the $RfC_w$ were 2.53 ppm, 0.10 ppm, 1.73 ppm, 1.66 ppm, and $0.05mg/m^3$, respectively, while the SECO-DNEL were 2.01 ppm, 0.11 ppm, 1.83 ppm, 1.77 ppm, $0.14mg/m^3$, respectively. There was no statistically significant difference between $RfC_w$ and SECO-DNEL. Conclusions: This study suggests that the SECO-DNEL could be applied in place of $RfC_w$ to set a PWEL for low-level exposure to chemicals, especially CMR materials. To further ensure the reliability of SECO-DNEL as an alternative tool, more chemicals should be applied for calculation and comparison with $RfC_w$.

A Study on The Performance and Fuel Economy of Diesel Vehicles According to Change in Fuel Properties (연료물성에 따른 경유 차량의 성능 및 에너지소비효율 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.667-675
    • /
    • 2018
  • Increasing emissions regulations and demand of high-efficiency cars that travels a lot of distance with less fuel, there is growing interest in Energy Consumption Efficiency. Korean energy consumption efficiency compute combined Fuel Economy by driven city & highway driving mode and present final Energy Consumption Efficiency as using 5-cycle correction formula. Energy consumption efficiency is computed Carbon-balance-method, when used burning fuel play a key role in vehicle performance & Energy Consumption Efficiency. In Korea, vehicle fuel is circulate by Petroleum and Petroleum Alternative Business Act, there is property difference in quality standard because petroleum sector's refine method or type of crude oil. It does not appear a big difference according to fuel, because it sets steady quality standard, it may affect the performance of automobile. Thus, in research We purchase a few diesel fuel which circulated in the market in summer season though directly-managed-gas station by petroleum sector, resolve property each of fuel, we compute Fuel Economy each of them. We analyze into change depend on applying for property as nowadays utilizing Energy Consumption Efficiency calculating formula of gasoline and diesel fuel. As result, Density each of sample fuel has a maximum difference roughly 0.9%, net heat value each of sample fuel has difference 1.6%, result of current Energy Consumption Efficiency each of sample fuel has a difference roughly 1% at city drive mode, 1.4% at highway drive mode. Result of use gasoline calculator formula shows less 6% result than nowadays utilizing Energy Consumption Efficiency calculating formula, each of sample's Energy Consumption Efficiency shows maximum roughly 1.4% result in city & highway drive mode.