• Title/Summary/Keyword: Carbon Budget

Search Result 120, Processing Time 0.031 seconds

Characteristics of TOC Distribution in Lake Hapcheon (합천호의 TOC 분포 특성)

  • Seong, Jin-Uk;Kim, Hyung-Jin;Park, Jae-Chul
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.711-719
    • /
    • 2011
  • This study was conducted to estimate the distribution characteristics and budget of organic matter in the Lake Hapcheon. In the dry season, the concentration ranges of organic carbons were similar, but in the rainfall season, it showed about double concentrations. Changes of vertical water quality in the lake, there were no big differences with the concentration by the depth. However, it tends to be relatively high on the surface, a little low on the mid-depth and high in the lake bottom. DOC rate at TOC, it was lower than POC rate at inflow and DOC rate was higher than POC rate in the lake and discharging water. R-DOC accounted for more 80% of DOC rate in all investigated areas, therefore we judge that this R-DOC is to increase the organic carbon pollution gradually. As the result of the calculated organic carbon budget in the Lake Hapcheon, the amount of allochthonous, autochthonous and release were 3,552, 3,288, 228 tonC/year, respectively. the amount of discharge, decomposition and sedimentation were 504, 1,344, 5,520 tonC/year, respectively. According to this investigation, the changed amount of organic matter in the Lake Hapcheon recorded -300 tonC/year with the increase of 7,068 tonC/year and the decrease of 7,368 tonC/year.

Greenhouse Gas Inventory in Land-Use Change and Forestry in Korea (임업 및 토지이용부문의 온실가스 흡수 및 배출 현황)

  • 이경학;손영모;김영수
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.53-61
    • /
    • 2001
  • An approach method for the greenhouse gas inventory in land-use change and forestry in Korea based on the 1996 revised IPCC(Intergovernmental Panel on Climate Change) guideline was developed and carbon budget of the year 1998 in this sector was estimated using the developed method as follow. For the category of changes in forests and other woody biomass stocks, carbon removal from the atmosphere by growth was 11,911 thousands TC(tons of carbon), carbon emissions to the atmosphere by harvests was 824 thousands TC, and net carbon removals was, therefore, 11,087 thousands TC, Emissions from decay of biomass remained after conversion of forest land to other land uses was estimated to 82 thousands TC For the category of land-use change and management, carbon emissions in mineral soils from land-use change was 1,025 thousands TC, that from liming of agricultural soils was 32 thousands TC, and total emissions was, therefore, 1,057 thousands TC. In summary, the carbon budget of land-use change and forestry of the year 1988 was as follows; the removal of 11,911 thousands TC, the emissions of 1,963 thousands TC, and the net removal of 9,948 thousands TC which was 9.6% of the emissions of 103,601 thousands TC from energy sector of the same year.

  • PDF

The Partitioning of Organic Carbon Cycle in Coastal Sediments of Kwangyang Bay

  • Han, Myung-Woo;Lee, In-Ho;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.103-111
    • /
    • 1997
  • Biogeochemical cycling of organic carbon is quantitatively partitioned in terms of 1) flux to the ocean bottom, 2) benthic utilization at or near the sediment-water interface, 3) remineralization and 4) burial within sediments, by making an independent determination for each component process from a single coastal site in Kwangyang Bay. The partitioning suggests that the benthic utilization at or near the sediment-water interface is the major mode of organic carbon cycling at the site. The benthic utilization takes 61.8% (441.6 gCm$^{-2}$ yr $^{-1}$) of the total near-bottem organic carbon flux, 714.6 gCm $^{-2}$yr$^{-1}$, and far exceeds the remineralization of organic carbon within the sediments which amounts only to 6% (41.24 gCm$^{-2}$yr$^{-1}$) of the total near-bottom flux. The residence time is about 1.6 years for the sedimentary metabolic organic carbon in the upper 45 cm. The dominant partitioning of the benthic utilization in the carbon budget suggests that most of labile organic carbons are consumed at or near the sediment-water interface and are left over to the sediment column by significantly diminished amounts.

  • PDF

The Responses of a Small Lake Watershed to an Inorganic Carbon Cycle (무기탄소 순환에 대한 소규모 호수 유역의 반응)

  • Cho, Youngil
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.610-617
    • /
    • 2013
  • Investigating the budgets of alkalinity and dissolved inorganic carbon (DIC) in lake water systems is significant for the examination of the behavior of a lake as a sink or a source with respect to the circulation of inorganic carbon chemistry. Budgets of total alkalinity ($Alk_T$) and DIC in Onondaga Lake, which was polluted by chronic calcium (Ca) loading in spite of the closure of soda ash ($Na_2CO_3$) facility, were determined by the analyses of inorganic carbon chemistry in tributary stream channels linked to the lake. AlkT and DIC fluxes of Onondaga Creek and Ninemile Creek occupied 65% and 54%, respectively, as larger tributary streams in comparison with other tributaries as well as different input sources. Budget calculations indicate that 18% of AlkT and 11% of DIC inputs to Onondaga Lake, respectively, remained immobilized in the Lake. This suggests that Ca chronically leached had been precipitated with inorganic carbon or remineralized by secondary mineral formation during the experimental period. In this study, the assumed mass balance calculation in Onondaga Lake with tributary streams resulted in exhibiting that the lake played a role of the sink for the inorganic carbon cycle.

Carbon balance and net ecosystem production in Quercus glauca forest, Jeju Island in South Korea

  • Jeong, Heon Mo;You, Young Han;Hong, Seungbum
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.250-258
    • /
    • 2022
  • Background: To assess the carbon sequestration capacity and net ecosystem productivity (NEP) of Quercus glauca forests, we analyzed the net primary productivity (NPP), carbon storage, and carbon emission of soil in a Q. glauca forest on Jeju Island (South Korea) from 2016 to 2018. Results: The average carbon stock in the above- and below-ground plant biomass was 223.7 Mg C ha-1, while the average amount of organic carbon fixed by photosynthesis was 9.8 Mg C ha-1 yr-1, and the average NPP was 9.6 Mg C ha-1 yr-1. Stems and branches contributed to the majority of the above- and below-ground standing biomass and NPP. The average heterotrophic carbon emission from the soil was 8.7 Mg C ha-1 yr-1, while the average NEP was 1.1 Mg C ha-1 yr-1. Although the carbon stock, carbon absorption, and soil respiration values were higher than those reported in other oak forests in the world, the NEP was similar or lower. Conclusions: These results indicator that Q. glauca forests perform the role of a large carbon sink through the CO2 absorption in the plants in terms of carbon balance. And it is judged to be helpful as data for assessment of carbon storage and flux in the forests and mitigation of elevated CO2 in the atmosphere.

Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image

  • Chun, Jung Hwa;Lim, Jong-Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.591-601
    • /
    • 2007
  • Spatial information on forest biomass is an important factor to evaluate the capability of forest as a carbon sequestrator and is a core independent variable required to drive models which describe ecological processes such as carbon budget, hydrological budget, and energy flow. The objective of this study is to understand the relationship between satellite image and field data, and to quantitatively estimate and map the spatial distribution of forest biomass. Landsat Enhanced Thematic Mapper (ETM+) derived vegetation indices and field survey data were applied to estimate the biomass distribution of mountainous forest located in Gwangneung Experimental Forest (230 ha). Field survey data collected from the ground plots were used as the dependent variable, forest biomass, while satellite image reflectance data (Band 1~5 and Band 7), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and RVI (Ratio Vegetation Index) were used as the independent variables. The mean and total biomass of Gwangneung catchment area were estimated to be about 229.5 ton/ha and $52.8{\times}10^3$ tons respectively. Regression analysis revealed significant relationships between the measured biomass and Landsat derived variables in both of deciduous forest ($R^2=0.76$, P < 0.05) and coniferous forest ($R^2=0.75$, P < 0.05). However, there still exist many uncertainties in the estimation of forest ecosystem parameters based on vegetation remote sensing. Developing remote sensing techniques with adequate filed survey data over a long period are expected to increase the estimation accuracy of spatial information of the forest ecosystem.

A Study on the Direction of Projects Based on Climate Change Response Policies Using the Green New Deal Policies and the Smart Green City Project as Examples (기후변화 대응 정책에 기반한 사업의 추진 방향성에 관한 연구 -그린 뉴딜 정책 중 스마트 그린도시 사업을 사례로-)

  • Ji-Hui Yoon;Sung-Jin Yeom
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1089-1102
    • /
    • 2022
  • Recently, urbanization has become a serious issue, as there is imbalance between regions and various environmental problems occur intensively in cities. Therefore, cities all over the world are promoting the Green New Deal and trying to realize carbon neutrality. Accordingly, the European Union is leading the creation of carbon-neutral cities by promoting policies aimed at rapidly realizing carbon neutrality. In Korea, projects such as U-City and Smart City have also been promoted continuously for many years, and recently, the projects Smart Green City and Carbon Neutral Green City have been introduced. Therefore, this study aimed to derive directions and implications for future projects based on policies to address climate change by analyzing the guidelines for the Smart Green City project and the project plans of Gimhae-si and Gangjin-gun, which are the leading projects in the Smart Green City business model and are equipped with an extensive budget.

Relationship between Hydrologic Flux of Total Organic Carbon and Gross Primary Production (총 유기탄소의 수문학적 플럭스와 총 일차생산량 사이의 관계분석)

  • Park, Yoonkyung;Cho, Seonju;Choi, Daegyu;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.503-518
    • /
    • 2012
  • Models estimating carbon budget at land surface are mainly interested in vertical flux of carbon. On the other hand, studies on horizontal flux are obviously lacked to confirm that relationship between the hydrological flux of organic carbon discharged from catchment and terrestrial carbon production, a relation between Total Organic Carbon(TOC) and Gross Primary Production(GPP) tried analysis through cross correlation. The best correlation structure is correlation between GPP and TOC of flow-weighted mean concentration from watershed without delay. Furthermore, cross correlation analysis was performed by consider periodicity. The correlation between TOC and GPP in summer was similar to correlation without periodicity. Therefore, correlation between GPP and TOC was most regulated by the correlation between GPP and TOC at summer. As a result, the vegetation carbon and organic carbon from watershed is recognized a close relationship on the seasonal. Therefore, future research is correlation analyzing between vegetation variables according season, GPP and TOC, we are expected to use quantitative understanding that horizontal flux flow of carbon from the surface.

A Study on Strategies of Public R&D to Achieve National Carbon Neutrality: Focusing on the Implications of the Republic of Korea

  • Song, Jaeryoung;Kim, Cheolhu
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.1
    • /
    • pp.1-29
    • /
    • 2022
  • Climate action is at the top of the agenda in the international community, as demonstrated at the 2021 G7 Summit and the 2021 UN Climate Summit. Major developed countries are scrambling to make a transition to a green economy and create a new growth momentum. Following the Paris Climate Agreement in 2016, they focus on "carbon neutrality" as an effective means of tackling climate change. The Republic of Korea, a high-carbon economy, submitted its second Nationally Determined Contribution and announced carbon neutrality as a top policy priority. Accordingly, the country increases government budget in research and development (R&D) and science and technology (S&T) policies. Against this backdrop, this study analyzed policies on carbon-neutral S&T and R&D in major advanced countries. The analysis was made by identifying globally pending issues in carbon-neutral policies and climate technology. In addition, focus group interviews were conducted six times with 10 experts to come up with three R&D strategies and action plans for government-funded research institutes to achieve carbon neutrality. To be specific, the following measures were suggested. First, creative and innovative R&D programs are required to solve the problem of carbon emissions. Second, it is necessary to establish carbon neutrality policies and infrastructure which are sustainable to run and manage. Third, it is crucial to promote cooperation in climate technology based on excellence. In conclusion, the strategies proposed in this study are expected to provide directions and implications for policymakers, researchers, and scholars in science and technology to develop effective strategies to achieve national carbon neutrality.

Lessons from Cross-Scale Studies of Water and Carbon Cycles in the Gwangneung Forest Catchment in a Complex Landscape of Monsoon Korea (몬순기후와 복잡지형의 특성을 갖는 광릉 산림유역의 물과 탄소순환에 대한 교차규모 연구로부터의 교훈)

  • Lee, Dong-Ho;Kim, Joon;Kim, Su-Jin;Moon, Sang-Ki;Lee, Jae-Seok;Lim, Jong-Hwan;Son, Yow-Han;Kang, Sin-Kyu;Kim, Sang-Hyun;Kim, Kyong-Ha;Woo, Nam-Chil;Lee, Bu-Yong;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • KoFlux Gwangneung Supersite comprises complex topography and diverse vegetation types (and structures), which necessitate complementary multi-disciplinary measurements to understand energy and matter exchange. Here, we report the results of this ongoing research with special focuses on carbon/water budgets in Gwangneung forest, implications of inter-dependency between water and carbon cycles, and the importance of hydrology in carbon cycling under monsoon climate. Comprehensive biometric and chamber measurements indicated the mean annual net ecosystem productivity (NEP) of this forest to be ${\sim}2.6\;t\;C\;ha^{-1}y^{-1}$. In conjunction with the tower flux measurement, the preliminary carbon budget suggests the Gwangneung forest to be an important sink for atmospheric $CO_2$. The catchment scale water budget indicated that $30\sim40%$ of annual precipitation was apportioned to evapotranspiration (ET). The growing season average of the water use efficiency (WUE), determined from leaf carbon isotope ratios of representative tree species, was about $12{\mu}mol\;CO_2/mmol\;H_2O$ with noticeable seasonal variations. Such information on ET and WUE can be used to constrain the catchment scale carbon uptake. Inter-annual variations in tree ring growth and soil respiration rates correlated with the magnitude and the pattern of precipitation during the growing season, which requires further investigation of the effect of a monsoon climate on the catchment carbon cycle. Additionally, we examine whether structural and functional units exist in this catchment by characterizing the spatial heterogeneity of the study site, which will provide the linkage between different spatial and temporal scale measurements.