• 제목/요약/키워드: Carbon Adsorption

검색결과 1,551건 처리시간 0.027초

Effect of Temperature on the Adsorption and Desorption Characteristics of Methyl Iodide over TEDA-Impregnated Activated Carbon

  • Park, Geun-Il;Kim, In-Tae;Lee, Jae-Kwang;Ryu, Seung-Kon;Kim, Joo-Hyung
    • Carbon letters
    • /
    • 제2권1호
    • /
    • pp.9-14
    • /
    • 2001
  • Adsorption and desorption characteristics of methyl iodide at high temperature conditions up to $250^{\circ}C$ by TEDA-impregnated activated carbon, which is used for radioiodine retention in nuclear facility, was experimentally evaluated. In the range of temperature from $30^{\circ}C$ to $250^{\circ}C$, the adsorption capacity of base activated carbon decreased sharply with increasing temperature but that of TEDA-impregnated activated carbon showed higher value even at high temperature ranges. Especially, the desorption amount of methyl iodide on TEDA-impregnated carbon represented lower value than that on unimpregnated carbon. The breakthrough curves of methyl iodide in the fixed bed packed with base carbon and TEDA-impregnated activated carbon at high temperature were compared. TEDA-impregnated activated carbon would be applicable to adsorption process up to $150^{\circ}C$ for the removal of radioiodine in a nuclear facility.

  • PDF

Adsorption of Nile Blue A from aqueous solution by different nanostructured carbon adsorbents

  • Abbasi, Shahryar;Noorizadeh, Hadi
    • Carbon letters
    • /
    • 제23권
    • /
    • pp.30-37
    • /
    • 2017
  • Dyes are widely used in various industries including textile, cosmetic, paper, plastics, rubber, and coating, and their discharge into waterways causes serious environmental and health problems. Four different carbon nanostructures, graphene oxide, oxidized multi-walled carbon nanotubes, activated carbon and multi-walled carbon nanotubes, were used as adsorbents for the removal of Nile Blue A (NBA) dye from aqueous solution. The four carbon nanostructures were characterized by scanning electron microscope and X-ray diffractometer. The effects of various parameters were investigated. Kinetic adsorption data were analyzed using the first-order model and the pseudo-second-order model. The regression results showed that the adsorption kinetics were more accurately represented by the pseudo-second-order model. The equilibrium data for the aqueous solutions were fitted to Langmuir and Freundlich isotherms, and the equilibrium adsorption of NBA was best described by the Langmuir isotherm model. This is the first research on the removal of dye using four carbon nanostructures adsorbents.

Equilibrium and Dynamic Adsorption of Methylene Blue from Aqueous Solutions by Surface Modified Activated Carbons

  • Goyal, Meenakshi;Singh, Sukhmehar;Bansal, Roop C.
    • Carbon letters
    • /
    • 제5권4호
    • /
    • pp.170-179
    • /
    • 2004
  • The equilibrium and dynamic adsorption of methylene blue from aqueous solutions by activated carbons have been studied. The equilibrium studies have been carried out on two samples of activated carbon fibres and two samples of granulated activated carbons. These activated carbons have different BET surface areas and are associated with varying amounts of carbon oxygen surface groups. The amounts of these surface groups was enhanced by oxidation with $HNO_3$ and $O_2$ gas at $350^{\circ}C$ and decreased by degassing at increasing temperatures of $400^{\circ}$, $650^{\circ}$ and $950^{\circ}C$. The adsorption increases on oxidation of the carbon surface and decreases on degassing. The increase in adsorption has been attributed to the formation of acidic carbon-oxygen surface groups and the decrease in adsorption on degassing to their elimination. The dynamic adsorption studies have been carried out on the two granulated activated carbons using two 50 mm diameter glass columns at a feed concentration of 300 mg/L and at different hydraulic loading rates (HLR) and bed heights. The minimum achievable concentrations are comparatively lower while the adsorption capacities are higher for GAC-S under the same operating conditions. The adsorption capacity of a carbon increases with increase in HLR but the rate of increase decreases at higher HLR values.

  • PDF

Adsorption properties of activated carbon prepared from pre-carbonized petroleum coke in the removal of organic pollutants from aqueous solution

  • Ahmed, S.A. Sayed;El-Enin, Reham M.M. Abo;El-Nabarawy, Th.
    • Carbon letters
    • /
    • 제12권3호
    • /
    • pp.152-161
    • /
    • 2011
  • Activated carbon was prepared from pre-carbonized petroleum coke. Textural properties were determined from studies of the adsorption of nitrogen at 77 K and the surface chemistry was obtained using the Fourier-transform infrared spectrometer technique and the Boehm titration process. The adsorption of three aromatic compounds, namely phenol (P), p-nitrophenol (PNP) and benzoic acid (BA) onto APC in aqueous solution was studied in a batch system with respect to contact time, pH, initial concentration of solutes and temperature. Active carbon APC obtained was found to possess a high surface area and a predominantly microporous structure; it also had an acidic surface character. The experimental data fitted the pseudo-second-order kinetic model well; also, the intraparticle diffusion was the only controlling process in determining the adsorption of the three pollutants investigated. The adsorption data fit well with the Langmuir and Freundlich models. The uptake of the three pollutants was found to be strongly dependent on the pH value and the temperature of the solution. Most of the experiments were conducted at pH 7; the $pH_{(PZC)}$ of the active carbon under study was 5.0; the surface of the active carbon was negatively charged. The thermodynamic parameters evaluated for APC revealed that the adsorption of P was spontaneous and exothermic in nature, while PNP and BA showed no-spontaneity of the adsorption process and that process was endothermic in nature.

Hevea brasiliensis - A Biosorbent for the Adsorption of Cu(II) from Aqueous Solutions

  • Sivarajasekar, N.
    • Carbon letters
    • /
    • 제8권3호
    • /
    • pp.199-206
    • /
    • 2007
  • The activated carbon produced from rubber wood sawdust by chemical activation using phosphoric acid have been utilized as an adsorbent for the removal of Cu(II) from aqueous solution in the concentration range 5-40 mg/l. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial copper ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon from rubber wood sawdust were compared with the results of commercial activated carbon (CAC). The adsorption on activated carbon samples increased with contact time and attained maximum value at 3 h for CAC and 4 h for PAC. The adsorption results show that the copper uptake increased with increasing pH, the optimum efficiency being attained at pH 6. The precipitation of copper hydroxide occurred when pH of the adsorbate solution was greater than 6. The equilibrium data were fitted using Langmuir and Freundlich adsorption isotherm equation. The kinetics of sorption of the copper ion has been analyzed by two kinetic models, namely, the pseudo first order and pseudo second order kinetic model. The adsorption constants and rate constants for the models have been determined. The process follows pseudo second order kinetics and the results indicated that the Langmuir model gave a better fit to the experimental data than the Freundlich model. It was concluded that activated carbon produced using phosphoric acid has higher adsorption capacity when compared to CAC.

Effects of NaOH Treatment on the Adsorption Ability of Surface Oxidized Activated Carbon for Heavy Metals

  • Min-Ho Park;So-Jeong Kim;Jung Hwan Kim;Jae-Woo Park
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권6호
    • /
    • pp.16-23
    • /
    • 2023
  • Heavy metal (Zinc, Cadmium, Lead) adsorption onto surface modified activated carbon was performed in order to better understand the effect of sodium ion addition to activated carbon. Surface modification methods in this research included water washing, nitric acid washing, and sodium addition after nitric acid washing. These surface modifications generated oxygen functional groups with sodium ions on the surface of the activated carbon.. This caused the change of the specific surface area as well as in the ratio of the carboxyl groups. Heavy metal adsorption onto sodium-containing activated carbon was the most among the three modifications. After the adsorption of heavy metals, the carboxyl group ratio decreased and sodium ions on the surface of the activated carbon were almost non-existent after the adsorption of heavy metals onto sodium-containing activated carbon. The results from this research indicated that ion exchange with sodium ions in carboxyl groups effectively improved heavy metal adsorption rather than electrostatic adsorption and hydrogen ion exchange.

흡착제로서 분변토 재활용에 관한 연구 (A study on recycling of cast as adsorbent)

  • 손희정;전성균;하상안
    • 환경위생공학
    • /
    • 제15권3호
    • /
    • pp.44-49
    • /
    • 2000
  • The purpose of this research is to evaluate the adsorption capacity of casts for heavy metals. The casts were excreted by earthworm, Lumbricus rubellus, after having eaten the paper sludge. Various batch experiments on adsorption were performed to compare cast and activated carbon. The pH increase in solution due to extractives from cast was 1.3 and the cation exchange capacity which implies adsorption capacity for solubles is greater on activated carbon than on cast. According to the results of batch experiment, the removal rates of Pb, Cu, Cr, Zn using the activated carbon and casts as adsorbent were 98%, 93%, 94%, 89%, 82% and 95%, 90%, 88%,80%, 66%, respectivity, and this removal were achived less than 90 minutes. It can be said that casts is so good adsorbent as activated carbon is, although adsorption carbon was found to be some large than those of casts through Freundlich isotherm applied for adsorption of soluble. As a result on the experiment of isothermic adsorption from the mixed component solution in the batch, the order of preferable elements in heavy metal adsorption was found to be Pb>Cd>Cu>Cr>Zn on activated carbon, respectively.

  • PDF

Heavy Metal Adsorption of Anodically Treated Activated Carbon Fibers in Aqueous Solution

  • Park, Soo-Jin;Kim, Young-Mi
    • Carbon letters
    • /
    • 제4권1호
    • /
    • pp.21-23
    • /
    • 2003
  • In this work, the effect of anodic oxidation treatment on Cr(VI) ion adsorption behaviors of activated carbon fibers (ACFs) was investigated. The aqueous solutions of 10 wt% $H_3PO_4$ and $NH_4OH$ were used for acidic and basic electrolytes, respectively. Surface characteristics and textural properties of ACFs were determined by XPS and $N_2$ adsorption at 77 K. The heavy metal adsorption of ACFs was conducted by ICP. As a result, the adsorption amount of the anodized ACFs was improved in order of B-ACFs > A-ACFs > pristine-ACFs. In case of the anodized treated ACFs, the specific surface area was decreased due to the pore blocking or pore destroying by acidic electrolyte. However, the anodic oxidation led to an increase of the Cr(VI) adsorption, which can be attributed to an increase of oxygen-containing functional groups, such as, carboxylic, lactonic, and phenolic groups. It was clearly found that the Cr(VI) adsorption was largely influenced by the surface functional groups, in spite of the reduced specific surface area of the ACFs.

  • PDF

Influence of Amine Grafting on Carbon Dioxide Adsorption Behaviors of Activated Carbons

  • Jang, Dong-Il;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3377-3381
    • /
    • 2011
  • In this work, the amine grafting treated activated carbons were studied for carbon dioxide adsorbent. The surfaces of activated carbon were functionalized by 3-chloropropyltrimethoxysilane, which was subsequently grafted with amine compounds tris-(2-aminoethyl)amine and tri-ethylenetetramine and subjected to comparison. The surface functional groups of the amine grafted activated carbons were characterized using XPS. The textural properties of the amine grafted activated carbons were analyzed by $N_2$/77 K isotherms. Carbon dioxide adsorption behaviors of the amine grafted activated carbons were examined via the amounts of carbon dioxide adsorption at 298 K and 1.0 atm. From the results, tris-(2-aminoethyl)amine grafted activated carbons showed 43.8 $cm^3$/g of carbon dioxide adsorption while non-treated activated carbons and triethylenetetramine grafted activated carbons showed less carbon dioxide adsorption. These results were thought to be due to the presence of isolated amine groups in the amine compounds. Tris-(2-aminoethyl)amine grafted activated carbons have basic features that result in the enhancement of adsorption capacity of the carbon dioxide molecules, which have an acidic feature.

활성탄 흡착에 의한 Ethyl Violet의 공정 파라미터 연구 (Study on Process Parameter of Ethyl Violet by Activated Carbon Adsorption)

  • 이종집
    • 한국수처리학회지
    • /
    • 제26권6호
    • /
    • pp.143-152
    • /
    • 2018
  • The process parameters of ethyl violet from aqueous solution by activated carbon adsorption were carried out as a function of pH, temperature, contact time, initial concentration and temperature. The adsorption equilibrium data can be described well by the Langmuir and Freundlich isotherm models. Base on Langmuir constant ($R_L=0.0343{\sim}0.0523$) and Freundlich constant (1/n=0.1633~0.1974), This process could be employed as effective treatment for adsorption of ethyl violet. The kinetic experimental results showed that the adsorption process can be well described with the pseudo second order model. Based on the positive enthalpy (6.505 kJ/mol), the adsorption of ethyl violet onto granular activated carbon is endothermic. The negative Gibbs free energy (-1.169~-1.681 kJ/mol) obtained indicates that the adsorption process is spontaneous and physisorption.