• Title/Summary/Keyword: Carbon/epoxy composites

Search Result 480, Processing Time 0.029 seconds

A Study on the Machining Properties of CU175NS Composite Laminates (CU175NS 적층판 복합재의 절삭가공특성 연구)

  • 김동현;김우순;김경우
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.88-93
    • /
    • 2001
  • Carbon fiber epoxy composite are widely used in airframe structures, space vehicles, sports equipment, and high speed reciprocating parts for industrial machinery. In this paper, the groove processing characteristics of carbon fiber epoxy com-posite was experimentally investigated in order to study the endmill operation of fiber reinforce epoxy composites. Followings are main finding from the experimental results. First, the cutting and bending force in groove processing of the carbon fiber epoxy composite increased as the spindle speed deceased. They also deceased as the table feed increased. Second, the good cutting status obtained at the entrance of groove while delamination occurred at the exit of groove, Third, the regular high speed steel endmill was not efficient, thus the new endmill such as coated carbide rooter endmill or dia-mode endmill should be used for the effective endmll operation of carbon filber epoxy composites.

  • PDF

Mechanical Behavior of $Al_2O_3$ Dispersed CFRP Hybrid Composites at Room and Cryogenic Temperature

  • Manwar Hussain;Choa, Yong-Ho;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.390-394
    • /
    • 1999
  • Al2O3 particles were dispersed into carbon fiber reinforced epoxy composites to fabricate hybrid epoxy based composites. Interface behavior and mechanical properties of these hybrid composites were studied at room and liquid nitrogen temperature and liquid nitrogen temperature and the results were compared with the those of carbon fiber reinforced composites to investigate their applicability at room and cryogenic temperature. Young's modulus in-perpendicular to fiber direction and interlaminar shear strength at room temperature and the thermal contraction down to cryhogenic temperature were improved significantly by the addition of AL2O3 filler into the epoxy matrix. The effect of Al2O3 particle addition on mechanical properties were discussed.

  • PDF

A Study on the Improvement of Microcrack Resistance of Carbon/Epoxy Composites at Cryogenic Temperature (극저온에서 탄소 섬유/에폭시 복합재료의 군열 저항성 향상에 관한 연구)

  • Hong, Joong-Sik;Kim, Myung-Gon;Kim, Chun-Gon;Kong, Cheol-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.49-52
    • /
    • 2005
  • In the development of a propellant tank using liquid oxygen and liquid hydrogen, the improvement of microcrack resistance of carbon/epoxy composites is necessary for the application of a composite material to tank structures. In this research, two types of carbon/epoxy composites with different matrix systems were tested to measure interlaminar shear strength (ILSS), one of the material properties to evaluate fiber-matrix interface adhesion indirectly. Short beam specimens were tested inside an environmental chamber at room temperature(RT) and at cryogenic temperature( - 150 $^{\circ}C$) respectively. Results showed that the matrix system with large amount of bisphenol-A and CTBN modified rubber had good performance at cryogenic temperature.

  • PDF

A Study on Permittivity of Multi-walled Carbon nanotube/Epoxy Composites (다중벽 탄소나노튜브/에폭시 복합재료의 유전율에 관한 연구)

  • 이상의;박기연;김천곤;한재흥
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.38-44
    • /
    • 2004
  • The electromagnetic interference (EMI) shielding is very essential for commercial and military purposes. We fabricated multi-walled carbon nanotube (MWNT)/epoxy composites and studied the electromagnetic characteristics of the composites before we study the characteristics of MWNT-added glass fiber-reinforced composites. After setting up the fabrication process, we measured the permittivity of MWNT/epoxy composites with process variables and MWNT concentrations in X-band (8.2GHz~12.4GHz). We also observed re-aggregation phenomenon of MWNTs and investigated its effect on the permittivity. The permittivity of the composites was influenced by the degree of dispersion of MWNTs and increased almost linearly as MWNT concentration increases.

Nanoparticle Size Effect on Mechanical Properties of Carbon Fiber-reinforced Polymer Composites (탄소섬유강화 에폭시수지의 기계적 성질에 미치는 나노입자크기의 영향)

  • Moon, Chang-Kwon;Kim, Bu-Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.186-190
    • /
    • 2015
  • $TiO_2$ nanoparticles can be used to improve the performance of carbon fiber-reinforced epoxy resin composites. In this study, the effect of the size of $TiO_2$ nanoparticles on the mechanical properties of carbon fiber-reinforced epoxy resin composites was investigated. The size of the $TiO_2$ nanoparticles was easily controlled using heat treatment. The size of the $TiO_2$ nanoparticles for this study were20nm, 100nm, and 200nm. Three types of carbon fibers with different diameters were also used in this study. The carbon fiber-reinforced epoxy resin composites with 20-nm $TiO_2$ powder showed the highest tensile strength compared to the other types of CFRP, regardless of the fiber maker or fiber diameter. The size of the $TiO_2$ powder and the diameter of the carbon fiber strongly affected the interfacial properties of all kinds of CFRP in this study.

Effect of strain rate on the mechanical behavior of carbon/epoxy composites subjected to high pressure (정수압을 받는 carbon/epoxy 복합재의 변형률 속도 효과)

  • 이지훈;김만태;이경엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.191-191
    • /
    • 2003
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by strain rate. In this work, we investigated the effect of strain rate on the compressional elastic modulus and fracture stress of fiber-reinforced composites under hydrostatic pressure environment. The material used in the compressional test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 250 MPa. Compressional tests were performed applying various strain rates of 0.05 %/sec, 0.25 %/sec, 0.45 %/sec, and 0.75 %/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate.

  • PDF

Loading rate effect on the delamination toughness of carbon/epoxy composites (하중속도가 탄소섬유/에폭시 적층복합재의 층간분리인성에 미치는 영향)

  • Ha S.R.;Rhee K.Y.;Kim H.J.;Jung D.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.593-597
    • /
    • 2005
  • It is generally accepted that fracture toughness of fiber-reinforced polymer composites is affected by loading rate in an atmospheric presure condition. For a present study, the loading rate effect on the fracture toughness of fiber-reinforced laminated composites in the hydrostatic pressure condition was investigated. For this purpose, fracture tests have been conducted using carbon/epoxy composites applying three steps of the strain rate at 270 MPa hydrostatic pressure condition. The loading rates applied were 0.05%/sec, 0.25%/sec, and 0.55%/sec. Fracture toughness was determined from the work factor approach as a function of applied loading rate. The result showed that fracture toughness decreased as the loading rate increased. Specifically, the fracture toughness decreased 12% as the loading rate increased from 0.05%/sec to 0.55%/sec.

  • PDF

Compressive Behavior of Carbon/Epoxy Composites under High Pressure Environment-Strain Rate Effect (고압환경에서 탄소섬유/에폭시 복합재의 압축거동에 대한 연구-변형률 속도 영향)

  • 이지훈;이경엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.148-153
    • /
    • 2004
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by a strain rate. In this work, we investigated the effect of strain rate on the compressive elastic modulus, fracture stress, and fracture strain of carbon/epoxy composites under hydrostatic pressure environment. The material used in the compressive test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 270㎫. Compressive tests were performed applying three strain rates of 0.05%/sec, 0.25%/sec, and 0.55%/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate. The results also showed that the fracture strain decreased with increasing strain rate.

Study of Nanoparticle Effect on Durability of Carbon fiber/Epoxy Resin Composites in Moisture Environment (수분환경에서 탄소섬유강화 에폭시수지의 내구성에 대한 나노입자의 영향)

  • Ahn, Seok-Hwan;Choi, Young-Min;Moon, Chang-Kwon
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 2014
  • This study has been investigated on the durability of carbon fiber/epoxy composites (CFRP) in moisture environment. The carbon fiber/epoxy composites were modified to use the nanoparticles such as carbon nanotubes and titanium oxide. These hybrid composites were exposed to moisture environment for a certain period of time. Weight gain according to immersion time, quasi-static tensile test and micro-graphic characterization were investigated on the samples exposed to moisture environment. Consequently, the weight gains increased with increasing immersion time and weight gain of the hybrid composites was lower than the one of CFRP through the whole immersion time. The tensile strengths decreased with increasing immersion time and tensile strengths of the hybrid composites were higher than the one of CFRP through the whole immersion time. The CFRP were observed more degraded than hybrid compositess in moisture environment. Therefore, it was concluded that the addition of nanoparticles in CFRP could lead to improve the durability in moisture environment.

Stundy on Simulation Characteristics of Low Velocity Impact Test of Carbon/Epoxy Composite Plates Manufactured by Filament Winding Method (필라멘트 와인딩 공법으로 제작한 탄소섬유/에폭시 복합소재 평판의 저속 낙하 충격시험 시뮬레이션에 관한 연구)

  • BYUN, JONGIK;KIM, JONGLYUL;HEO, SEOKBONG;KIM, HANSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.190-196
    • /
    • 2018
  • Carbon fiber/epoxy composites are typical brittle materials and have low impact properties. Recently, it is important to investigate impact characteristics of carbon fiber composites because of increasing use as automobile parts and high pressure hydrogen vessels of fuel cell electric vehicles for light weight. In this study, the low velocity impact properties of carbon fiber/epoxy composites fabricated by a filament winding method are studied. The low velocity impact properties were measured by performing tests according to ASTM D7136. The low velocity impact simulations were carried out using commercial structural analysis software, Abaqus. The absorbed energy and the delamination shapes were compared between the experimental and simulation results. The numerical analysis method showed that the absorbed energy decreased with the reduced number of cohesive elements in the composite models.