• Title/Summary/Keyword: Carbide Tool

Search Result 236, Processing Time 0.027 seconds

Microstructural Characteristics of Rapidly Solidified Highly Alloyed High Speed Tool Steels (급속응고한 고합금 고속도 공구강의 미세조직 특성)

  • Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.242-251
    • /
    • 1995
  • Highly alloyed high speed tool steels(ASP steels) were rapidly solidified by melt spinning process, and the microstructures of melt spun tool steel ribbons were examined by optical microscopy and transmission electron microscopy with energy dispersive x-ray spectroscope. The microstructure of melt spun tool steel ribbon was found to be consisted of ${\delta}-ferrite$ cells surrounded by austenite and V-rich MC carbides. The size of ${\delta}-ferrite$ cells and intercellular MC carbides were about $0.4{\mu}m$ or less and 30nm or less, respectively. From the melt spun tool steel ribbons, only the MC type carbide phase was observed, instead of $M_2C$, $M_{23}C_6$ and $M_6C$ carbides which were generally observed in other rapidly solidified high speed steels. Such a change in type of carbide phase formed could be attributed to the increase in alloying content of vanadium and carbon. However, changes in microsturcture of melt spun tool steels with alloying content of cobalt, vanadium and carbon were not observed.

  • PDF

A Study on the Performance Evaluation of End Mill Tool Fabricated by Ultra-Fine WC (초미립 WC 소재 엔드밀 공구의 성능 평가에 관한 연구)

  • Kim, Do-Hyoung;Woo, Yong-Won;Lee, Hyun-Ho;Kim, Jeong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • The ultra-fine tungsten carbide(WC) powders have been actively used in the cemented carbides industry, because they have excellent mechanical properties such as high hardness, strength, and toughness. In this study, ultra-fine WC-Co alloys powders have been fabricated by thermochemical and thermomechanical process such as spray conversion process or high energy ball milling. The non-coated end-mill which is made of ultra-fine tungsten carbide is investigated by measuring cutting force, tool wear, tool life, and surface roughness profile according to cutting length. The machining test was conducted with high hardened workpiece and their performances are investigated in high speed cutting conditions. Also, the relationship between the machining characteristics and the Co contents are investigated under various high speed cutting conditions.

Effect of the Circular Saw-Blade Type and Wear on the Cutting Quality of a Glass Carbon-Fiber Hybrid Composite (원형 톱날의 형태와 마모가 유리 탄소섬유 하이브리드 복합재료의 절단 품질에 미치는 영향)

  • Baek, Jong-Hyun;Joo, Chang-Min;Kim, Su-Jin;Park, Yoon-Ok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.72-79
    • /
    • 2021
  • A circular saw is an effective tool for cutting glass and carbon-fiber hybrid composites. This study investigated tool wear and cut quality when reusing saw blades. The carbide saws wear four times faster than the new ones, and polycrystalline diamond (PCD) is very resistant to tool wear, except at the end of its lifespan. The cut cross-section quality is affected by the blade type, tool wear, and spindle speed. Alternate top bevel (ATB)-type blades are suitable for cutting fiber-reinforced plastics, but triple-chip grind (TCG)-type blades are unsuitable because they cause fiber-pullout defects. Tool wear and low spindle speeds increase the occurrence of arc scratches, due to the rear saw blade. A microscopic examination showed that the burr, which is a mixture of fiber chips and epoxy matrix, was bonded on top, and glass-fiber delamination occurred on the bottom glass-fiber-reinforced polymer (GFRP) surface.

Thin Film Adhesion and Cutting Performance in Diamond-Coated Carbide Tools

  • Jong Hee Kim;Dae Young Jung;Hee Kap Oh
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.105-109
    • /
    • 1997
  • The effects of surface conditions of the C-2 cemented carbide substrate on the adhesion of diamond film were investigated. The substrates were pretreated for different times with Murakami's reagent and then the acid solution of an H2SO4-H2O2. The adhesion strength was estimated by a peeling area around the Rockwell-A indentation. The cutting performance of the diamond-coated tools was evaluated by measuring flank wears in dry turning of Al-17% Si alloy. The morphology of deposited diamond crystallites was dominated by (111) and (220) surfaces with a cubooctahedral shape. The diamond film quality was hardly affected by the surface conditions of the substrate. The variation of tool life with longer substrate etching times resulted from a compromies between the increase of film adhesion at the interface and the decrease of toughness at the substrate surface. The coated tools were mainly deteriorated by chipping and flaking of the diamond film form a lock of adhesion strength, differently from the wear phenomena of PCD tools.

  • PDF

Friction Welding of Sintered Hard Tool Materials to Metals and Its Quality Evaluation by AE (마찰용접에 의한 초경공구재와 금속간의 압접기술개발과 AE에 의한 품질평가)

  • 오세규;전태언;박일동;오명석;이주석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.36-46
    • /
    • 1996
  • This paper deals with determinig the proper friction welding condition and analyzing various mechanical properties of friction welded joints of sintered carbide tool materials(K20, P25, and SKDX5 for the blade part of drill or press punch) to alloy steel (SKH4, SCM440 for the shank part of drill or press punch), the alloy steel to aluminum(A6061 for the interlayer material between the blade part and the shank) and sintered carbide tool materials to alumminum. And also acoustic emission test will be carried out during fiction welding to evaluate the weld quality.

  • PDF

A Study on the Micro Structure Fabrication using Electrolytic In-process Dressing (전해 연속 드레싱을 이용한 마이크로 구조물 제작)

  • 이현우;최재영;정해도;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.258-261
    • /
    • 2002
  • In this study, micro tools(WC) to produce micro-structure and parts, were fabricated ell a cylindrical grinding machine using ELID(Electrolytic In-process Dressing) technique. The shape of the micro-carbide tool was square, corn. The size of the micro-carbide tool was measured less than 10$\mu\textrm{m}$ respectively by SEM(Scanning Electron Microscope). Furthermore, we fabricated micro structure by different processing methods on the desk top cylindrical grinding machine. The manufactured shape was like a tower and the measurement showed that the endpoint of micro structure was $50{\times}50$$\mu{\textrm}{m}$.

  • PDF

Fabrication of Micro Electrodes for Electrochemical Machining (전해 가공을 위한 미세 전극 제작)

  • Kim B. H.;Park B. J.;Chu C. N.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.407-412
    • /
    • 2005
  • For micro electrochemical machining (ECM), tool electrodes with various sizes and shapes are necessary. In this paper, tool electrodes were fabricated by micro electrical discharge machining (EDM). Electrode material is tungsten carbide which has high rigidity and good conductivity for micro electrochemical machining. Disk-type and sphere-type electrodes were fabricated to prevent taper shape of side walls or to produce spherical features. Various 3D micro structures were fabricated by electrochemical milling with developed electrodes.

  • PDF

Fabrication of Tungsten Carbide Microshaft Using Electrochemical Machining (전해 가공을 이용한 텅스텐 카바이드 미세축 제작)

  • Kang, Myung-Ju;Oh, Young-Tak;Chu, chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.80-87
    • /
    • 2002
  • Tungsten carbide microshaft is used as micro-punch, electrode of MEDM (micro-electro-discharge machining), and micro-tool because it has high hardness and high rigidity. In this study, the tungsten carbide microshaft was fabricated using electrochemical machining. Concentration of material removal at the sharp edge and metal corrosion layer affect the shape of the microshaft. Control of microshaft shape was possib1e through conditioning the machining voltage and electrolyte concentration. By applying periodic voltage, material removal rate increased and surface roughness improved. The fabricated microshaft in $H_2 SO_4$ electrolyte maintained sharper end edge and better surface finish than those fabricated by other electrolytes.

Effect of Laser Surface Modification of Cemented Carbide Substrates on the Adhesion of Diamond Films (Cemented Carbide기판의 레이저 표면 개질이 다이아몬드 박막의 접합력에 미치는 영향)

  • Lee, Dong-Gu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.170-176
    • /
    • 2000
  • A novel method for improving the adhesion of diamond films on cemented carbide tool inserts has been investigated. This method is based on the formation of a compositionally graded interface by developing a microrough surface structure using a pulsed laser process. Residual stresses of diamond films deposited on laser modified cemented carbides were measured as a function of substrate roughness using micro-Raman spectroscopy. The surface morphology and roughness of diamond films and cemented carbides were also investigated at different laser modification conditions. It was found that the increasing interface roughness reduced the average residual stress of diamond films, resulting in improved adhesion of diamond films on cemented carbides.

  • PDF

Thermal Design and Experimental Test of a High-Performance Hot Chuck for a Ultra Precision Flip-Chip Bonder (초정밀 플립칩 접합기용 고성능 가열기의 열적 설계 및 시험)

  • Lee Sang-Hyun;Park Sang-Hee;Ryu Do-Hyun;Han Chang-Soo;Kwak Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.957-965
    • /
    • 2006
  • A high-performance hot chuck is designed as a heating device for an ultra-precision flip-chip bonder with infrared alignment system. Analysis of design requirements for thermal performance leads to a radiative heating mechanism employing two halogen lamps as heating source. The heating tool is made of silicon carbide characterized by high thermal diffusivity and small thermal expansion coefficient. Experimental tests are performed to assess heat-up performance and temperature uniformity of the heating tool. It is revealed that the initial design of hot chuck results in a good heat-up speed but there exist a couple of troubles associated with control and integrity of the device. As a means to resolve the raised issues, a revised version of heating tool is proposed, which consists of a working plate made of silicon carbide and a supporting structure made of stainless steel. The advantages of this two-body heating tool are discussed and the improved features are verified experimentally.