• Title/Summary/Keyword: Car-body

Search Result 704, Processing Time 0.025 seconds

Predicting Noise inside a Trimmed Cavity Due to Exterior Aero-Acoustic Excitation (외부 유동 소음원에 의한 흡차음재 공간내에서의 소음 예측)

  • Jeong, ChanHee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.569-569
    • /
    • 2014
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. This paper presents a numerical analysis method for a simplified vehicle model. The internal air cavity including trim component are included in the simulation. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using CFD Code. The second step consists in the computation of the vibro-acoustic transmission through the window using the finite element vibro-acoustic solver Actran.

  • PDF

Fiber Laser Welding in the Car Body Shop - Laser Seam Stepper versus Remote Laser Welding -

  • Kessler, Berthold
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.17-22
    • /
    • 2013
  • The excellent beam quality of high power fiber lasers are commonly used for remote welding applications in body job applications. The Welding speed and productivity is unmatched with any other welding technology including resistance spot welding or traditional laser welding. High tooling cost for clamping and bulky safety enclosures are obstacles which are limiting the use. With the newly developed Laser stitch welding gun we have an integrated clamping in the process tool and the laser welding is shielded in a way that no external enclosure is needed. Operation of this laser welding gun is comparable with resistance spot welding but 2-times faster. Laser stitch welding is faster than spot welding and slower than remote welding. It is a laser welding tool with all the laser benefits like welding of short flanges, weld ability of Ultra High Strength steel, 3 layers welding and Aluminium welding. Together with low energy consumption and minimum operation cost of IPG fiber laser it is a new and sharp tool for economic car body assembly.

A Study on Warm Forming Technology of Car Body Reinforced Dash Using Magnesium Alloy Sheet (마그네슘 합금 판재를 활용한 차체 Reinforced Dash 부품 온간성형 공정 연구)

  • Park, Dong Hwan;Tak, Yun Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.519-524
    • /
    • 2014
  • The use of light weight magnesium alloy offers significant potential towards improvement of the automotive fuel efficiency. However, the application of formed magnesium alloy components in auto-body structures is restricted due to the low formability at room temperature and lack of knowledge for processing magnesium alloys at elevated temperatures. In this study, a warm tensile test of magnesium alloys was performed to measure tensile strength and elongation. An improvement in formability was confirmed at increased temperatures above about $250^{\circ}C$. Car body warm forming technology was conducted for forming forming reinforced dash components of the magnesium alloy AZ31B sheet at elevated temperatures.

Safety Analysis for Passengers of Composite Car-body against Lightning Strikes (복합차체의 낙뢰에 대한 인체 안전성 분석)

  • Kim, Sung-Wook;Choi, Su-Yeon;Park, Dae-Won;Kil, Gyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.144-150
    • /
    • 2008
  • In this paper, the safety for passengers of composite car-body against lightning strikes was analyzed by the application of an impulse generator which can produce impulse current up to 50 [kA] with 8/20 [us] waveform. Potential difference on inside surface of the car-body was measured as a safety parameter for the passengers against lightning strikes. The potential difference between 20 [cm] distant was 175 [V] at 37.67 [kA], and it corresponded to 875 [V] between 1 [m] distant. The amount of charge flowing a passenger at 100 [kA] impulse current can be estimated to 0.31 [mA s]. This is much less than the limit amount of charge for human body, 30 [mA s] which is presented by Koeppen and Osypka.

  • PDF

Analysis of the Shifting Transients from the Passenger Car with an Automatic Transmission considering the Vehicle Model (차량 모델을 고려한 자동변속기 차량의 변속 과도 특성 분석)

  • 공진형;박진호;김정윤;임원식;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.154-162
    • /
    • 2004
  • In this study, a mathematical model for analyzing the shifting transients of the passenger car with an automatic transmission is proposed. The proposed model comprises a power transmission system and a vehicle system, which are coupled. In order to extract the modeling parameters, on-road car test is carried out. The model is composed of a detailed powertrain, an engine/AT housing, a simplified suspension system, tires and a vehicle body model. On the test, the vehicle accelerations and pitch ratio are measured by using accelerometers and a gyro sensor. The speeds, the brake signal, and the throttle position are taken from sensors which already exist in the vehicle. Considering natural ftequencies, which is calculated from the measured accelerations, and the characteristic equation, vehicle model parameters are identified. Dynamic behaviors during upshift or downshift are simulated using the proposed vehicle model. By comparing and analyzing the simulation result and on-road car test data, the vibration of the Engine/AT housing influences the shifting transients. The effect of model parameters are also studied. Among model parameters, the location of engine mountings influences the vibration of the vehicle body.

Air Flow Analysis due to the Configuration of Car Body Radiator Grill (차체 라디에이터그릴의 형상에 따른 공기 유동해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.21-27
    • /
    • 2013
  • This study is investigated on flow analysis according to grill configuration of radiator. The stream of flow which pass through radiator grill in car body and the contour of pressure distribution are estimated by the basis. As the magnitude of resistance force which flow affects the car body is investigated so that the power reduction can be reduced. As the pressure inside radiator grill is assessed, more efficiency can be investigated in order that the flow rate inside car body can be increased. Model 2 has the most air resistance and model 1 has the least among model 1, 2 and 3. Model 1 has the most air flow rate at inside. There are model 3 and 2 simulated according to flow rate. As the curved surface at radiator grill configuration increases in number, air flow rate becomes distributed uniformly. By considering the effect on air resistance and air flow rate at radiator grill, model 3 becomes the most effective configuration.

MAGNESIUM TWB PANEL WITH LASER WELDING FOR AUTO BODY ASSEMBLY (차체 제작을 위한 레이저용접 마그네슘 TWB 판넬)

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1312-1316
    • /
    • 2007
  • Strip casted and rolled magnesium sheet is become exiting material for car manufacturer, due to its better formability and specific strength compare with conventional extruded sheet. TWB technology was attractive for car body designer, because it saves the weight of the car without strength loss. In this study, the laser welding performance of magnesium sheet was investigated for Mg TWB panel manufacturing. The material was strip casted and rolled magnesium alloy sheet contains 3 wt% Al and 1 wt% Zn (AZ31). Lamp pumped Nd:YAG laser of 2kW was used and its laser light was delivered by optical fiber of 0.6mm core diameter to material surface with focusing optics of 200mm focal length for TWB welding. The microstructure of weld bead was investigated to check internal defects such as inclusion, porosity and cracks. Also mechanical properties and formability were evaluated for press forming of car body. For the results, there was no crack but inclusion or porosity on weld at some conditions.The tensile strength of weld was over 95% of base metal. Inner and outer panel of engine hood were press formed and assembled at elevated temperature.

  • PDF

Toughness Enhancement of Carbon Fiber Reinforced Composites for Automobile using Silica Fume (실리카 퓸을 이용한 자동차용 탄소섬유강화복합재의 인성 강화)

  • Lim, Sungmook;Yu, Jaesang;Lee, Wonoh
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2018
  • The age of electric vehicle is coming. One of the most important problems to be solved for popularization of electric vehicle is fuel economy. To increase fuel economy of electric vehicles, it is necessary to improve the performance of the battery or the car body should be lighter than now. To solve the problem of the car body, change the car body's material to carbon fiber reinforced composites can be an excellent answer. However, the part made from carbon fiber reinforced composites is vulnerable to accidents due to their high brittleness. In this study, ductile silica fume was added into the carbon fiber composites to enhance toughness. To examine this, various amounts and sizes of silica fume were considered and the toughness enhancement was examined by performing tensile tests.

Development of an Easy-assemble Arduino Car Kit for Practice (쉽게 조립 가능한 실습용 아두이노 자동차 키트 개발 사례)

  • Lee, Eun-Sang
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.31-37
    • /
    • 2022
  • The objective of this study was to present an example of the development of an Arduino car kit for practice. First, problems in the existing Arduino car kit were analyzed and various prototypes were developed that reflected the improvement plan. The developed kit was applied to the education field to identify problems and improvements, following which it was corrected and supplemented for use as an Arduino car kit for final practice. The Arduino car kit can be used for various experiments and practices related to an Arduino car by using a combination of two car bodies consisting of an upper plate and a lower plate. When a method to couple the upper and lower plates was used, the car body could be easily and quickly configured without the need for bolts or nuts. The developed kit involves a simple and easy assembly method, and hence, the time required for assembling a car body is considerably short. Accordingly, it is expected to be widely used as a kit that can directly experience programming education using a car.

A Convergence Study on Flow Analysis According to the Position of Radiator Inside Car (자동차 내부에서의 라디에이터 위치에 따른 유동해석에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.321-326
    • /
    • 2019
  • As the use of public transportation increases, many researches are being carried out to increase the fuel economy of car. The goal of this study is to design a front body in order to increase the fuel economy of car through three models of cars. All models were designed with CATIA program and the flow analyses on the air outside car by model were carried out with ANSYS program. At the driving speed of 90km/h, the longer the body, the less air resistance it received. So, it is thought that there is the effect to increase fuel economy. Through this study, it can be helpful to design the front car body that can maximize train efficiency. By utilizing the design data on flow analysis according to the position of radiator inside car in this study, the esthetic sense can be given by being grafted onto the real automotive part.