• 제목/요약/키워드: Car-body

검색결과 707건 처리시간 0.024초

2 층열차 차체의 meta model 기반 최적설계 (Meta Model-Based Desgin Optimization of Double-Deck Train Carbody)

  • 황원주;정재준;이태희;김형진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.387-392
    • /
    • 2005
  • Double-deck train have studied in the next generation train in KRRI. Double-deck train have more seat capacities compared with single deck vehicles and is a efficient, reliable and comfortable alternative train. Because of heavy weight, weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. Weight minimization problem of the double-deck train car-body is required to decide 66 design variables of thicknesses for large aluminum extruded panel while satisfying stress constraints. Design variables are too many and one execution of structural analysis of double-deck train carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Metamodels such as response surface model (RSM) and kriging model are used to approximate model-based optimization is described. RSM is easy to obtain and expressed explicit function, but this is not suitable for highly nonlinear and large scaled problems. Kriging model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. Target of this design is to find optimum thickness of AEP to minimize weight of doulbe-deck train carbody. In this study, meta model techniques are introduced to carry out weight minimization of a double-deck train car-body.

  • PDF

고체전달음 저감을 위한 음향전달 특성해석에 관한 연구 (The Study on the Analysis of the Acoustic Transfer Function for Reducing the Structure-borne Noise)

  • 김경모
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.57-63
    • /
    • 2002
  • This paper describes the acoustic analysis of mid duty truck. The focus of the analysis is on structure borne engine noise with major contributions of 2nd order. It has been previously recognized that the noise contribution of each transfer path of structure borne noise can be varied with the charateristics of each mounts and vibro acoustic sensitivity of car body. The structure of car body will be split up into three major sub components, which are modeled separately, the engine, the frame and the cab. The acoustic performance is evaluated on three levels: engine to frame transfer, frame to cab transfer, and panel contribution from cab to driver. In order to perform these analyses, analytical models are created for the engine, frame, cab and acoustic cavity. The models are linked through a coupled fluid structure calculation, and through FRF Based Substructuring for the structural couplings. Based on the structural coupling calculations, a transfer path analysis is performed to identify the most important transfer paths. These paths are then the focussing points for applying modifications to the structure or the mount system. Finally, a number of modification are proposed and their effect is quantified.

  • PDF

반응면 근사를 이용한 자기부상열차 차체 프레임 경량화 설계 (Light-Weight Design of Maglev Car-Body Frame Using Response Surface Approximation)

  • 방제성;한정우;이종민
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1297-1308
    • /
    • 2011
  • The light-weight design of UTM (Urban Transit Maglev)-02 car-body frames are performed, based on initial configuration. The thicknesses of fourteen sub-structures are defined as design variables and the loading condition is considered according to weight of sub-structures, electronic and pneumatic modules and passengers. For efficient and robust process of design optimization, objective function and constraints are approximated by response surface approximation. Structural analysis is performed at some sampling points to construct the approximated objective function and constraints composed of design variables. Design space is changed to find many optimal candidates and best optimal design can be found eventually. The Matlab Optimization Toolbox is used to find optimal value and sensitivity analysis about each design variable is also performed.

축소형 철도차량의 설계변수에 따른 횡진동 해석 (Lateral Vibration Analysis for Design Parameter of the Scale Model of a Railway Vehicle)

  • 이승일;최연선
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1231-1237
    • /
    • 2006
  • The vibration of a running railway vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a of the scale model of a railway vehicle. Also, the effects on the car-body, bogie and wheelset were examined for the weight and the stiffness of the second suspension system. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension system increase. And the lateral vibration of the bogie increases as the mass ratio between car-body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

다물체동역학기법을 이용한 고급버스의 전차량 시뮬레이션과 시험의 매칭 (Matching Simulations with Tests of Cruise Bus Using Multi-body Dynamics Technology)

  • 최소해;박성준;이정한;유완석;손정현
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.14-22
    • /
    • 2010
  • In this study, a large bus is tested for measuring the steering response based on the slarom test and step steer test. A full car model by using ADAMS/Car is established for computer simulation. For bus modeling, user defined templates are made and used in the simulation. Simulation results according to the slarom and step steer test are compared to the physical experiments, in which several sensors are installed to measure vehicle responses. The results obtained from the comparison show a good agreement with regard to the vehicle velocity and steering angle.

전동차 상하진동에 대한 현가장치 설계변수의 영향 (Effects of the Design Parameters of Suspension Systems on the Bounce of Electric Trains)

  • 박기수;최연선
    • 한국철도학회논문집
    • /
    • 제11권1호
    • /
    • pp.39-44
    • /
    • 2008
  • 본 연구에서는 실측 주행시험 결과데이터를 바탕으로 윤축 진동과 설계변수간의 관계를 규명하고자 2 자유도계 모델을 구성하였다. 특히 2차 현가장치인 공기스프링의 점탄성 특성을 반영하기 위해 니시무라 공기스프링 모델을 적용하였다. 수치해석 결과 내부 압력 감소 및 보조 공기탱크 체적 증가 시 객차 가속도응답이 감소하는 것을 확인할 수 있었다. 이에 안정성을 헤치지 않는 범위 내에서 현가장치의 강성을 조정해 볼 필요가 있음을 알았다.

고Si DP980강 스폿 용접 특성에 미치는 Phosphorus (P) 및 in-situ 후열처리 펄스 조건의 영향 (Effects of Phosphorus and in-situ Post-heat Pulse Conditions on Resistance Spot Weldability of High Si DP980 Steel Sheet)

  • 최두열
    • Journal of Welding and Joining
    • /
    • 제33권6호
    • /
    • pp.21-26
    • /
    • 2015
  • Recently, application of UHSS(Ultra High Strength Steels) whose tensile strength is over 1000MPa to car body structure are growing due to great needs for light weighting and improved crash worthiness. However, their poor weldability is one of obstacles to expand selecting to car body. In this study, effect of Phosphorus contents on resistance spot weldability of high elongation DP980 steel whose Si content is over 1% was investigated. The cross tension strength (CTS) was decreased showing partial interface fracture as Phosphorus content increase because of solidification segregation of Phosphorus. In order to improve resistance spot weldability by modification of welding condition, in-situ post-weld heating pulse was introduced after main pulse. The optimum cooling time between main and post pulse and post-pulse current condtion were determined through FEM welding simulation and DOE tests. The CTS was increased about 1.5 time showing plug fracture. The decrease of Phosphorus segregation was found to be a major reason for weld ductility and CTS improvement.

알루미늄 기반 Advanced Multi-Material 기술의 선진 동향 (Trends of Advanced Multi-Material Technology for Light Materials based on Aluminum)

  • 이목영;정성훈
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.19-25
    • /
    • 2016
  • Global warming is hot issue to keep the earth everlastingly. Despite the increase of the world population and the energy demand, the world oil supply and the oil price are hold the steady state. If we are not decrease the world population and the energy consumption, unforeseeable energy crisis will come in the immediate future. AMT acronym of Advanced Materials for Transportation is a non-profitable IEA-affiliated organization to mitigate the oil consumption and the environment contamination for the transportation. In recent, Annex X Multi-materials Joining was added to enhance the car body weight reduction cause the high fuel efficiency and the low emission of exhaust gas. Multi-materials are the advanced materials application technology to optimize the weight, the performance and the cost with the combination of different materials such as Al-alloy, Mg- alloy, AHSS and CFRP. In this study, the trends of AMT strategy and Al-alloy based multi-materials joining technology were review. Also several technologies for Al-alloy dissimilar joining were investigated.

박판성형가공을 고려한 자동차 충돌해석 (Crash Analysis of the ULSAB-AVC Model with Considering Forming Effects)

  • 허훈;윤종헌;바오이동;김세호;박성호
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.556-561
    • /
    • 2006
  • Most of auto-body members are composed of stamping parts. These parts have the non-uniform thickness and plastic work hardening distribution during the forming process. This paper is concerned with the side impact analysis of the ULSAB-AVC model according to the US-SINCAP in order to compare the crashworthiness between the model with and without considering the forming effect. The forming effect is ca]ciliated by one-step forming analysis for several members. The crashworthiness is investigated by comparing the deformed shape of the cabin room the energy absorption characteristics and the intrusion velocity of a car. The result of the crash analysis demonstrates that the crash mode, the load-carrying capacity and energy absorption can be affected by the forming effect. It is noted that the design of an autobody should be carried out considering the forming effect for accurate assessment of crashworthiness.

차륜 불평형이 있는 철도차량의 동적해석 (Dynamic Analysis of Railway Vehicle with Wheel Unbalance)

  • 이승일;최연선
    • 대한기계학회논문집A
    • /
    • 제37권11호
    • /
    • pp.1387-1395
    • /
    • 2013
  • 차륜 불평형은 차륜의 무게중심이 윤축의 기하학적 중심축에서 벗어나 있을 때 발생한다. 차륜 불평형을 수정하지 않고 주행하면 불평형에 의한 원심력이 차체의 진동을 발생시키게 되며 차륜의 마모를 촉진시키거나 차축 베어링에 손상을 주게 된다. 본 연구에서는 철도차량 동적해석을 통하여 차륜 불평형이 차량 임계속도와 차체 진동에 미치는 영향을 검토하였다. 차륜 불평형은 임계속도를 감소시키고 차체 공진을 유발할 수 있음을 알 수 있었다. 또한 차륜의 정적, 동적 불평형에 따른 차체진동을 해석함으로써 불평형 수정은 양면 밸런싱이 필요함을 밝혔다.