• 제목/요약/키워드: Car-body

검색결과 704건 처리시간 0.029초

알루미늄 압출재로 이루어진 철도차량 차체의 경량화를 위한 최적설계 방안 연구 (Weight Reducing of Aluminum Extrusion Profiles of a Railway-Car Body Based on Topology and Size Optimization)

  • 한순우;정현승
    • 대한기계학회논문집A
    • /
    • 제35권2호
    • /
    • pp.213-221
    • /
    • 2011
  • 알루미늄 재질의 도시철도차량 차체의 경량화를 위해 이중 판재구조로 이루어진 철도차량용 알루미늄 압출재의 최적설계를 수행하였다. 위상최적설계 기법을 이용하여 알루미늄 차체에서 가장 큰 중량을 차지하는 하부 프레임 베이스 플레이트의 경량화된 위상을 도출하였고, 이를 기반으로 압출재 부재별 치수 최적화를 수행하였다. 하부 프레임 다음으로 큰 중량을 차지하는 측면 프레임 압출재에 대해서는 치수 최적화를 통하여 경량설계를 수행하였다. 최적설계안과 현재 설계의 최대발생응력과 최대 변형량을 비교하여 최적설계결과의 타당성을 검증하였다. 이 과정을 통하여 언더프레임과 사이드프레임의 중량을 현재보다 평균 12% 줄일 수 있었고, 차체 전체로는 8.5%의 경량화 효과를 얻었다.

패널 기여도 분석에 의한 승용차의 실내 소음 저감 (Interior Noise Reduction of a Passenger Car using Panel Contribution Analysis)

  • 이두호;김태정
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.785-794
    • /
    • 1999
  • The panel contribution analysis to reduce interior booming noise of a passenger car is carried out using both experimental method and numerical one. The accelerations of panels are measured on the outer surface of car body during operation. The acoustic characteristic of cavity is represented by two different ways. One is the acoustic transfer function obtained by experiment with reciprocal manner. The other is the boundary element model and numerical results of the model are calculated using SYSNOISE. The results from numerical method show more good agreement with measured sound pressure levels than the experimental one. Contributions of panels for interior noise are ranked and structure of the car is reinforced according to the results, which shows that the panel contribution analysis is a powerful tool to lessen structure-borne noise of passenger vehicle.

  • PDF

차실 내부소음의 특성과 저감에 관한 실험적 고찰(상)

  • 정주화
    • 오토저널
    • /
    • 제5권2호
    • /
    • pp.15-20
    • /
    • 1983
  • The nature and the sources of sound in cars is discussed in the light of many previous works, and the importance of the system resonances inside cars is suggested. An investigation of a 'boom' problem in a small size passenger car is described. It was established that the 'boom' frequencies coincided with engine firing frequency and also with several system resonances. To find out main transmission path of the noise to the car interior, various possible sources were eliminated from the investigation by means of simple modification to the vehicle. Data on the structural modes of the body, and the acoustic modes of the passenger compartment at various forcing cases were obtained to provide better understanding of the problem. It was found that the acoustic resonance responsible for the boom was controlled largely the bending motion of the floor. To investigate the effect of the structural modification to the acoustic response, center floor of the car was reinforced. a great reduction of the noise inside the car especially at the offending speed range, was achieved by this modification.

  • PDF

Modeling and Control of Active Suspension System with Full-Car Wheels

  • Bui, Trong-Hieu;Kim, Sang-Bong;Lee, Choong-Hwan;Shin, Min-Saeng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.166.3-166
    • /
    • 2001
  • This paper presents a modeling and control method of active suspension system with full-car model by using H$\infty$ control theory. The full-car model has seven degree of freedom including heaving, pitching and rolling motions. As the control method, H$\infty$ controller is designed so as to guarantee the robustness of closed loop system under the presence of uncertainties and disturbances. Active system with H$\infty$ controller can reduce the accelerations of the car-body in the heaving, pitching and rolling directions. The effectiveness of the controller is proved through simulation results in both time and frequency domains.

  • PDF

한국형 고속전철 시제차량 설계검증을 위한 동특성 해석 (Analysis of Dynamic Behavior for Design Review of the Korean High Speed Prototype Test Train)

  • 정경렬;백진성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1232-1240
    • /
    • 2001
  • In this study. a computer simulation of the Korean High Speed Prototype Test Train was performed to investigate the dynamic behavior(running stability. safety and comfort) in detail design process. The simulation model which was prepared by ADAMS/Rail V10.l consists of power car and middle car assembly (2 motorized cars + 3 trailer cars). The nonlinear analysis takes into account the full vehicle model including wheel/rail contact and the influence of disturbed track. Throughout the dynamic calculation of KHST on the straight and the curved track. accelerations in car body. ride comforts and wheel rail forces were investigated.

  • PDF

승용차 차실모델의 진동 및 소음특성에 관한 연구 (A Study on the vibration and noise characteristics of vehicle compartment model)

  • 김석현
    • 산업기술연구
    • /
    • 제9권
    • /
    • pp.87-99
    • /
    • 1989
  • It is desirable to predict the noise and vibration problems of a passenger car in its design stage for a better ride quality. Dominant frequencies of the noise inside a car range from about 50 Hz to 300 Hz and these are frequently caused by the coupling of the acoustic normal modes of the compartment cavity and structural modes of the body. In this paper, car interior noise problem is investigated in view of vibration-acoustic modes coupling and numerical simulation is performed on the interior noise. In the simulation, experimental modal data of the vehicle structure are utilized to improve the accuracy of the analysis. The results are in good agreement with those of experiment on a half scaled vehicle compartment model. Especially, strongly coupled modes can be predicted, which give useful informations to solve noise problems of real car at design stage.

  • PDF