• 제목/요약/키워드: Car speed

검색결과 922건 처리시간 0.025초

의사결정나무와 시공간 시각화를 통한 서울시 교통사고 심각도 요인 분석 (Analysis of Traffic Accidents Injury Severity in Seoul using Decision Trees and Spatiotemporal Data Visualization)

  • 강영옥;손세린;조나혜
    • 지적과 국토정보
    • /
    • 제47권2호
    • /
    • pp.233-254
    • /
    • 2017
  • 본 연구는 교통사고 가운데 인적피해를 동반한 교통사고에 대해 교통사고의 시공간적 특성과 교통사고 심각도에 영향을 미치는 주요인을 분석하고자 하였다. 이를 위해 2012년부터 2015년 까지 4년간 서울시에서 발생한 교통사고 데이터 가운데 인적사고가 있는 데이터를 교통사고 심각도에 따라 경상, 중상, 사망 교통사고로 분류하고, 교통사고의 시공간특성분석은 커널분석, 핫스팟분석, 스페이스타임큐브분석, EHSA(Emerging HotSpot Analysis)를 수행하였으며, 교통사고 심각도에 영향을 미치는 요인 분석은 데이터마이닝 기법중의 하나인 의사결정나무 모형을 활용하였다. 분석결과 서울시 교통사고는 도심부 보다는 외곽지역에서 많이 발생하며 특히 한강 이남의 상업 활동이 많은 곳에서 교통사고가 많음을 확인할 수 있었다. 특히 서초와 강남의 일부 상업 및 유흥지역을 중심으로 교통사고 집중지역이 나타나며 교통사고 다발지역은 시간이 흐름에 따라 그 현상이 더욱 심화되는 경향을 보이고 있었다. 사망교통사고의 경우 지역적으로는 영등포구, 구로구, 종로구, 중구, 성북구 일부지역에 통계적으로 유의미한 핫스팟지역이 나타나지만 시간대별로 구분해보면 오후 퇴근시간 부터 새벽까지 일부 구간에서 핫스팟이 나타나며 시간 고려 없이 분석된 결과와는 상이한 패턴이 나타남을 알 수 있었다. 서울시 교통사고 심각도에 영향을 미치는 주요 요인으로는 사고유형이 가장 중요한 역할을 하며 도로의 종류, 차량의 종류, 교통사고 발생 시간, 법규위반 종류 등의 순으로 중요도가 나타났다. 교통사고 가운데 심각한 교통사고로 이어지는 경우는 차대 사람이나 차량단독으로 사고가 나는 경우 고속도로나 특별광역시도와 같이 폭원이 넓고 차량속도가 높은 곳에서 승합차나 화물차에서 중상의 교통사고가 일어날 가능성이 높으며, 동일한 상황에서 승합차나 화물차가 아닌 승용차, 자전거, 이륜차 등의 경우에는 새벽시간에 심각한 교통사고로 이어질 가능성이 높은 것으로 나타났다.

안드로이드 기반의 도로 밝기 측정 어플리케이션 구현 (A Road Luminance Measurement Application based on Android)

  • 최영환;김홍래;홍민
    • 인터넷정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.49-55
    • /
    • 2015
  • 최근 5년간의 주 야간별 교통사고 통계에 따르면 대부분의 자동차 교통사고는 주간보다 야간에 더 많이 발생했다. 교통사고는 다양한 원인으로 발생하게 되는데 그 중 중요한 요소는 조명 미설치 또는 조명 위치의 부적합으로 운전자의 시야 혼란을 야기하여 교통사고를 유발하게 된다. 본 논문은 부적절한 도로 조명 시설 위치와 미설치 구역을 파악하고 관련 정보들을 데이터베이스화 하였다. 이를 위해 운전자의 위치 정보, 주행 정보, 도로 밝기 정보를 스마트폰을 이용하여 실시간으로 데이터베이스 서버에 저장하는 도로 밝기 측정 어플리케이션을 설계 및 구현하였다. 본 어플리케이션은 안드로이드 NDK을 이용하여 Native C/C++ 환경에서 구현되었으며, 이에 따라 자바나 다른 언어로 작성된 어플리케이션 보다 연산속도를 향상시켰다. 도로 밝기를 측정하기 위하여 카메라 영상인 RGB 색 공간의 영상을 YCbCr 색 공간의 영상으로 변환하여 휘도를 측정한다. 이를 위해 먼저 차선을 검출하고 도로 밝기 검출 영역의 휘도 값을 계산하여 데이터베이스에 저장한다. 또한 스마트폰의 카메라를 이용하여 실시간으로 도로의 영상을 입력 받고 도로의 차선부분에 대한 관심영역을 지정하여 연산 속도를 향상시켰다. 관심영역의 영상은 Grayscale 영상으로 변환하고 Canny 에지 검출기를 사용하여 외곽선을 추출하고 Hough line transform을 적용하여 차선의 후보군을 선별한다. 선별된 후보 차선의 기울기를 계산하여 양쪽의 차선을 선정한다. 양쪽 차선이 검출되면 차선의 교차점으로부터 아래로 20픽셀의 높이를 가진 삼각형을 도로 밝기 측정범위로 설정한다. 삼각형 부분의 모든 픽셀에 대한 R, G, B값을 추출하여 Y값을 계산하고 픽셀 밝기 값의 평균을 0부터 100사이의 값으로 계산하여 검은색부터 초록색으로 도로의 밝기를 표현하였다. 계산된 60m 전방의 도로 밝기 값은 스마트폰의 GPS 센서를 통해 측정된 운전자의 주행 정보와 위치 정보를 획득하여 10분 간격으로 무선통신을 통해 데이터베이스 서버에 저장하였다. 향후 수집된 도로 밝기 정보들은 스마트폰 어플리케이션이나 차량 내비게이션을 통해 운전자들에게 조심 운전을 경고하거나 효율적인 도로 조명 관리를 위한 개보수 계획에 반영될 수 있을 것으로 기대된다.