• Title/Summary/Keyword: Car panel

Search Result 100, Processing Time 0.034 seconds

Effect of CAR and NPL on ROA: Empirical Study in Indonesia Banks

  • TANGNGISALU, Jannati;HASANUDDIN, Rusdiah;HALA, Yusriadi;NURLINA, Nurlina;SYAHRUL, Syahruni
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.6
    • /
    • pp.9-18
    • /
    • 2020
  • This study seeks to analyze the effect of Non-Performing Loans and Capital Adequacy Ratio on Return on Assets on ten conventional banks listed on the Indonesia Stock Exchange (BEI-IDX). This study uses secondary panel data for 2015-2019 in the form of CAR and NPL values from ten conventional banks listed on the BEI-IDX during the 2020 observation period. The research approach is quantitative descriptive with data analysis methods, namely, linear regression. The testing phase of this study includes: transform value, F-test, T-test and hypothesis test with significancy level sig < 0.05. The results of this study reveal that Non-Performing Loans had a significant negative effect (t = -2,637) (0.011 <0.0) on Return on Assets, while Capital Adequacy Ratio has no significant effect on ROA (0.760 > 0.05). R2 value is 0.128 or 12.8%. It has a significant effect on variables, calling efforts by banks, governments, and authorities monetary of related institutions to maintain the stability of finance. The reduction of Non-Performing Loan impacts on assets and capital adequacy ratio, besides, the normal NPL will control the stability of finance. If a balance is created either in the form of values or amounts of the variables, the reduction in Non-Performing Loans will be controlled.

Meta Model-Based Desgin Optimization of Double-Deck Train Carbody (2 층열차 차체의 meta model 기반 최적설계)

  • Hwang W.J.;Jung J.J.;Lee T.H.;Kim H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.387-392
    • /
    • 2005
  • Double-deck train have studied in the next generation train in KRRI. Double-deck train have more seat capacities compared with single deck vehicles and is a efficient, reliable and comfortable alternative train. Because of heavy weight, weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. Weight minimization problem of the double-deck train car-body is required to decide 66 design variables of thicknesses for large aluminum extruded panel while satisfying stress constraints. Design variables are too many and one execution of structural analysis of double-deck train carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Metamodels such as response surface model (RSM) and kriging model are used to approximate model-based optimization is described. RSM is easy to obtain and expressed explicit function, but this is not suitable for highly nonlinear and large scaled problems. Kriging model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. Target of this design is to find optimum thickness of AEP to minimize weight of doulbe-deck train carbody. In this study, meta model techniques are introduced to carry out weight minimization of a double-deck train car-body.

  • PDF

The Study on the Analysis of the Acoustic Transfer Function for Reducing the Structure-borne Noise (고체전달음 저감을 위한 음향전달 특성해석에 관한 연구)

  • Kim, K.M.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.57-63
    • /
    • 2002
  • This paper describes the acoustic analysis of mid duty truck. The focus of the analysis is on structure borne engine noise with major contributions of 2nd order. It has been previously recognized that the noise contribution of each transfer path of structure borne noise can be varied with the charateristics of each mounts and vibro acoustic sensitivity of car body. The structure of car body will be split up into three major sub components, which are modeled separately, the engine, the frame and the cab. The acoustic performance is evaluated on three levels: engine to frame transfer, frame to cab transfer, and panel contribution from cab to driver. In order to perform these analyses, analytical models are created for the engine, frame, cab and acoustic cavity. The models are linked through a coupled fluid structure calculation, and through FRF Based Substructuring for the structural couplings. Based on the structural coupling calculations, a transfer path analysis is performed to identify the most important transfer paths. These paths are then the focussing points for applying modifications to the structure or the mount system. Finally, a number of modification are proposed and their effect is quantified.

  • PDF

Methods of Making Samples for a Visual Experiment with Feature Lines of Outer Automotive Panels (자동차 외판 특징선의 시각적 분석을 위한 시편 제작방법)

  • Han, Juho;Chung, Yunchan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.455-462
    • /
    • 2015
  • A feature line is a visually noticeable creased line on outer automotive panels. Feature lines play an important role in creating a good impression of a car. Even though the manufacturing quality of feature lines is important, it is difficult to achieve the designed shape owing to the springback of sheet metal. The current study presents five methods of making samples that will be used in a visual experiment to discover a quality control quantitative manufacturing allowance for feature lines. Measurement and inspection methods for the samples are also presented. The results show that plunge machining is the most accurate way to make the desired shape, and that wrapping the machined surface with sheet film is an appropriate way to emulate the roughness and visual texture of the painted outer panels of a car.

Cognitive-oriented Design of Automotive Instrument Panel (인지측면을 고려한 자동차 IP 설계)

  • Kang, Sun-Mo;Baek, Seung-Ryul;Park, Beom
    • Proceedings of the ESK Conference
    • /
    • 1987.04a
    • /
    • pp.143-148
    • /
    • 1987
  • The Design of automotive IP must be designed for improving safety, and for satisfying the consumer's preference and for enlarging the usability of various gauges and information displaydevices. Also, these objects become more important by regarded and will be treated very sensitively for the next-generation vehicle concepts. Therefore, Automotive IP must be designed to adjust these trends, besides accord with car-inner lifestyle. One of these concept's designs is to apply Human Sensibility Ergonomics. This study suggestes the driver-centered design of the IP components that focused on the audio unit and HVAC(Heat and Ventilation Air Conditioner) through cognitive experiment. Primarily, analyzed components of IP in use, then, combined these components (especially, the number and arry of buttons, the position of LCD panel, etc.) nd designed some sample images(prototypes) the same as real size. After the subjects looked at the sam ples at the interval of 0.2/0.4/0.6 seconds, subjects should fill out the given forms from their memory. Then, the optimal prototype of IP was designed in respect to the correctness of cognition. The results will show the basic guideline of optimal design of IP that in the case of aaudio unit, the position of LCD, the array and the number of channel, in the case of HVAC, the position of LCD, TEMP button type and other button types.

  • PDF

Design of forklift status information system using Android device (안드로이드 기기를 활용한 지게차 상태 정보 시스템 설계)

  • Park, Se-il;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.233-235
    • /
    • 2017
  • Forklift tend to work in place rather than moving due to work environment conditions, so they express only the engine operation time without expressing the moving distance unlike a general car's instrument panel. Therefore, various consumables constituting the forklift have a replacement cycle according to the operation time of the engine. However, it is very difficult to judge the exact replacement cycle only by the engine operation time because the working environment differs for each forklift. In this paper, we propose a system that provides position information and moving distance information of forklift to driver using GPS and IMU sensor. By using this system, it is expected that the forklift status information, which is difficult to judge by the existing instrument panel, is provided as easier information, and economic benefits for forklift management and maintenance are expected.

  • PDF

Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology (자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술)

  • Chang, InSung;Cho, YongJoon;Park, HyunSung;So, DeugYoung
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

A Driving Information Centric Information Processing Technology Development Based on Image Processing (영상처리 기반의 운전자 중심 정보처리 기술 개발)

  • Yang, Seung-Hoon;Hong, Gwang-Soo;Kim, Byung-Gyu
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.31-37
    • /
    • 2012
  • Today, the core technology of an automobile is becoming to IT-based convergence system technology. To cope with many kinds of situations and provide the convenience for drivers, various IT technologies are being integrated into automobile system. In this paper, we propose an convergence system, which is called Augmented Driving System (ADS), to provide high safety and convenience of drivers based on image information processing. From imaging sensor, the image data is acquisited and processed to give distance from the front car, lane, and traffic sign panel by the proposed methods. Also, a converged interface technology with camera for gesture recognition and microphone for speech recognition is provided. Based on this kind of system technology, car accident will be decreased although drivers could not recognize the dangerous situations, since the system can recognize situation or user context to give attention to the front view. Through the experiments, the proposed methods achieved over 90% of recognition in terms of traffic sign detection, lane detection, and distance measure from the front car.

Analysis of Riding Quality Acceptability and Characteristics of Expressway Users and Evaluation of MRI Thresholds using Receiver Operating Characteristic curves (고속도로 이용자의 승차감 평가특성 및 만족도 분석과 ROC 곡선을 이용한 평탄성 관리기준 적정성 검토)

  • Lee, Jaehoon;Sohn, Ducksu;Ryu, SungWoo;Kim, Youngwon;Park, Junyoung
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.35-44
    • /
    • 2018
  • PURPOSES : The purpose of this research is to analyze the characteristics of panels that affect the evaluating results of riding quality and to evaluate the appropriateness of roughness management criteria based on ride comfort satisfaction. METHODS : In order to analyze the influence of panel characteristics of riding quality, 33 panels, consisting of civilians and experts, were selected. Also, considering the roughness distribution of the expressway, 35 sections with MRI ranging from 1.17 m/km to 4.65 m/km were selected. Each panel boarded a passenger car and evaluated the riding quality with grades from 0 to 10, and assessed whether it was satisfied or not. After removing outlier results using a box plot technique, 964 results were analyzed. An ANOVA was conducted to evaluate the effects of panel expertise, age, driving experience, vehicle ownership, and gender on the evaluation results. In addition, by using the receiver operating characteristics (ROC) curve, the MRI value, which can most accurately evaluate the satisfaction with riding quality, was derived. Then, the compatibility of MRI was evaluated using AUC as a criterion to assess whether the riding quality was satisfactory. RESULTS : Only the age of the panel participants were found to have an effect on the riding quality satisfaction. It was found that satisfaction with riding quality and MRI are strongly correlated. The satisfaction rate of roughness management criteria on new (MRI 1.6 m/km) and maintenance (MRI 3.0 m/km) expressways were 95% and 53%, respectively. As a result of evaluating the roughness management criteria by using the ROC curve, it was found that the accuracy of satisfaction was the highest at MRI 3.1-3.2 m/km. In addition, the AUC of the MRI was about 0.8, indicating that the MRI was an appropriate index for evaluating the riding quality satisfaction. CONCLUSIONS : Based on the results, the distribution of the panels' age should be considered when panel rating is conducted. From the results of the ROC curve, MRI of 3.0 m/km, which is a criterion of roughness management on maintenance expressways, is considered as appropriate.

Study of Examples for Air Bag Non-deployment Including Rear Collision and Failure Phenomenon by Damage of Control Parts in Vehicle Air Bag (자동차 에어백의 제어부품 불량에 의한 고장현상 및 후방 추돌에 관련된 에어백 미전개에 대한 사례 연구)

  • Lee, Il Kwon;Kim, Young Gyu;Moon, Hak Hook
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.102-106
    • /
    • 2012
  • The purpose of this paper is to study the failure cases in relation to system of Air Bag in vehicle happened in the field. In the first example, it was separated the soldering parts connected the wire pin between air bag module and clock spring of air bag. Whenever the pin shake by the car's vibration, the driver verified the malfunction phenomenon appeared air bag warning lamp on instrument panel in front of driver's seat. in car inside room. The second example, it verified the warning lamp lighting phenomenon of air bag by produced the circuit plate non-contacting of single an element in air bag electronic control unit. The third example, it verified the light of air bag warning indicator lamp by separated with soldering parts connecting inner pin and resistance terminal of seat belt pretensioner using passenger seat. The fourth example, when the passenger car crash a back of truck, the former bumper get jammed under the latter as the roof height of car low less than that. Therefore, the impact of Car's collision verified that don't transfer with body frame of vehicle because of no attachment impact sensor in it.