• 제목/요약/키워드: Car interior noise

검색결과 127건 처리시간 0.024초

승용차 차실모델의 진동 및 소음특성에 관한 연구 (A Study on the vibration and noise characteristics of vehicle compartment model)

  • 김석현
    • 산업기술연구
    • /
    • 제9권
    • /
    • pp.87-99
    • /
    • 1989
  • It is desirable to predict the noise and vibration problems of a passenger car in its design stage for a better ride quality. Dominant frequencies of the noise inside a car range from about 50 Hz to 300 Hz and these are frequently caused by the coupling of the acoustic normal modes of the compartment cavity and structural modes of the body. In this paper, car interior noise problem is investigated in view of vibration-acoustic modes coupling and numerical simulation is performed on the interior noise. In the simulation, experimental modal data of the vehicle structure are utilized to improve the accuracy of the analysis. The results are in good agreement with those of experiment on a half scaled vehicle compartment model. Especially, strongly coupled modes can be predicted, which give useful informations to solve noise problems of real car at design stage.

  • PDF

승용차의 차실음향 및 차체진동에 관한 연구 (III) -연성계수 및 패널 기여도를 이용한 차실모델의 실내소음 저감- (A Study on the Acoustical and Vibrational Characteristics of a Passenger Car(III) -Reduction of Interior Noise of Vehicle Compartment Model by Using Coupling Coefficient and Panel Contribution Factor-)

  • 김석현;이장무;김중희
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.13-21
    • /
    • 1992
  • 본 연구에서는 구조-음향모드 연성계수를 이용하여 심각한 소음문제가 발생하 는 경우의 효과적인 소음저감 방안을 제시하고, 제작된 차실모델에 대한 소음저감 시 뮬레이션을 수행한 후 그 결과를 실험치와 비교함으로써 수립된 소음저감 방안의 신뢰 도와 유용성을 확인하였다.

승용차의 고급감 음질에 대한 연구 (Research for High Sound Quality for a Passenger Car)

  • 김태규;김성종;이상권;박동철;이경훈
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1158-1166
    • /
    • 2009
  • Future luxury car must satisfy the improvement of the luxury sound quality on the vehicle interior noise. Previously, we have analyzed vehicle interior noise by dB(A) based analysis. However, dB(A) has very little to do with the psychological satisfaction of the consumers. People want a sound that is characteristic and refined not a sound that is quiet and common. Subjective test were conducted to determine the relationship between subject' s responses and calculated metric values. People choose the most luxury sound among the various vehicle interior noise. And the purpose of this study is that we understand the metrics which constitute the luxury vehicle sound. We have analyzed vehicle interior noise by using the statistical analysis such as multiple regression method and correlation method. And we organized the index of the luxury sound quality.

자동차용 흡.차음재의 성능분석을 위한 통계적 에너지 기법 적용의 검정 (An application of the Statistical Energy Analysis for Absorbing and Soundproofing Materials of Vehicle)

  • 이장명;이준;김대곤;정병인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1109-1113
    • /
    • 2001
  • Interior parts of a vehicle are getting important to reduce interior noise of car. Therefore, prior analysis of cabin noise related with interior parts are necessary at first design stage. Recently, Statistical Energy Analysis(SEA) has been suggested as a possible way for meddle of high frequency range analysis with interior parts. This article introduces an example of the application of SEA to predict air born noise of cabin of car.

  • PDF

통계적 에너지 해석법을 이용한 KTX차량의 실내소음 해석 (Analysis of Interior Noise for KTX Train using SEA)

  • 김재철;이찬우;최성훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.783-788
    • /
    • 2004
  • Recently, Statistical Energy Analysis(SEA) is being increasingly applied to describe vibro-acoustic behavior of complex structures, such as air plane, automobile, ship, building. In this paper, we discuss the application of SEA to predict the interior noise for KTX train. To validate the SEA model of KTX train, calculated the interior noise for motorized car is compared to measured one. Finally, the reduction measures of interior noise for KTX are also discussed.

  • PDF

SUV용 액슬의 소음원 규명 및 소음 저감을 위한 액슬의 구조변경에 관한 연구 (Identification of the Interior Noise Generated by SUV Axle and Modification of the Structural on Axle System for Noise Reduction)

  • 이주영;조윤경;김종연;이상권
    • 한국소음진동공학회논문집
    • /
    • 제16권6호
    • /
    • pp.582-592
    • /
    • 2006
  • This paper presents experimental and analytic methods to reduce interior noise generated by car axle. The test vehicle has a whine noise problem at passenger seats. In order to identify transfer path of interior axle noise, the vibration path analysis, the modal analysis and running modal analysis are systematically employed. By using these various methods, it has been founded that the interior noise generated by car axle was air borne noise. To reduce and predict axle noise, various structural modifications are performed by using FEM and BEM techniques, respectively. Through the modification of the axle structure, the air borne noise of the axle was reduced 3$\sim$4 dBA level.

차량 실내 소음의 음질 분석 및 모델화 (Model Development and Analysis of the Car Interior Sound Quality)

  • 허덕재;조연;김희석;이근수;박태원
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.254-260
    • /
    • 2000
  • the reduction of the interior nosie level has been the main interest of NVH engineers in the development of vehicles. However, the consumer's perception on the car noise is affected largely by the psychoacoustic characteristics of the noise, as well as the sound pressure level. In this study, the quality of the vehicle interior nosie is analyzed by employing the subjective evaluations and by representing them in temrs of the objective quantities. The subjective evaluatins were performed for the seven vehicles in the range of subcompact to luxury cars. The methods of paired comparisons and semantic differential were used to study the preference, the quality of interior noise and their correlation. The linear regression models were obtained for the subjective evaluation and the sound quality metrics.

  • PDF

벡터 해석법에 의한 차실 소음의 저감 (Refinement of Car Interior Noise Using the Vectorial Analysis Technique)

  • 이정권;민형선;백홍전
    • 소음진동
    • /
    • 제1권2호
    • /
    • pp.141-147
    • /
    • 1991
  • A vectorial approach is used to reduce the objectionable booming noise in the vehicle interior cabin. After identifying the structural transmisson paths, the structural-acoustic transfer functions are evaluated at those mounting positions. Using the measured deformations in the mounting elements and multiplying them with each dynamic stiffness value one can easily get the dynamic input forces acting on the mounting elements. By summing all the contributors vectorially, most important contributor or transmission path can be determined. According to the experimental information, devised countermeasures are applied to a development car and good results are obtained.

  • PDF

Adaptive Wavelet Denoising For Speech Rocognition in Car Interior Noise

  • 김이재;양성일;Kwon, Y.;Jarng, Soon S.
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.178-178
    • /
    • 2002
  • In this paper, we propose an adaptive wavelet method for car interior noise cancellation. For this purpose, we use a node dependent threshold which minimizes the Bayesian risk. We propose a noise estimation method based on spectral entropy using histogram of intensity and a candidate best basis instead of Donoho's best bases. And we modify the hard threshold function. Experimental results show that the proposed algorithm is more efficient, especially to heavy noisy signal than conventional one.

광음향기법을 이용한 한국형 고속전철의 실내소음 예측 (Interior noise prediction of the high speed train using ray method)

  • 김관주;박진규
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.157-164
    • /
    • 2000
  • This study is about predicting the interior pressure level of the korean high speed train using ray acoustic method. The motor car and the motor and passenger cabin are investigated under the environment of passing open countryside and inside tunnel of 350 km/hr. Calculated sound levels are compared with the proposed sound levels and suggestions about the transmission Joss values of isolating panels inside motor car and the guide lines of allowed sound power limit of motor equipments are provided. Results of TPI car show calculated interior sound level is below the proposed values for both cases of open countryside running and inside tunnel. Since ray acoustic method calculated only air borne noise component, real sound level of the motor car may be higher than prediction. Passenger cabins of TMI, TM5 show higher sound level than the proposed values, so window method was carried out to find the contribution of each panel components and point out the remedy of transmission path. Reduction of sound power of motor equipments should be condisered at the same time.

  • PDF