• Title/Summary/Keyword: Car crash

Search Result 203, Processing Time 0.029 seconds

Study on the Collision Acceleration Data Filtering of the Passenger Trailer for the Article 16 of the Rolling Stock Crashworthiness Regulations (철도안전법 시행지침 16조의 충격가속도 평가를 위한 객차의 데이터 필터링 연구)

  • Cho, Hyun-Jik;Kim, Woon-Gon;Koo, Jeong-Seo;Song, Dhal-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.820-825
    • /
    • 2008
  • In the article 16 of the domestic rolling stock crashworthiness regulations, the collision acceleration level during collision accidents should remain under the maximum 7.5g and the average 5g. By the way, the accelerations obtained in crash simulations and tests contain many kinds of high frequency components due to numerical oscillations or noisy signals. So, this paper aims to develop reliable post-processing methods to filter high frequency oscillations and extract the rigid body motions of passenger rail cars. For this study we used the 1-dimensional dynamic model of KHST (Korean high-speed train), and evaluated acceleration data at the driver's area in the first power car and the passenger area in the following trailer.

  • PDF

Design of Occupant Protection Systems Using Global Optimization (전역 최적화기법을 이용한 승객보호장치의 설계)

  • Jeon, Sang-Ki;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.135-142
    • /
    • 2004
  • The severe frontal crash tests are NCAP with belted occupant at 35mph and FMVSS 208 with unbelted occupant at 25mph, This paper describes the design process of occupant protection systems, airbag and seat belt, under the two tests. In this study, NCAP simulations are performed by Monte Carlo search method and cluster analysis. The Monte Carlo search method is a global optimization technique and requires execution of a series of deterministic analyses, The procedure is as follows. 1) Define the region of interest 2) Perform Monte Carlo simulation with uniform distribution 3) Transform output to obtain points grouped around the local minima 4) Perform cluster analysis to obtain groups that are close to each other 5) Define the several feasible design ranges. The several feasible designs are acquired and checked under FMVSS 208 simulation with unbelted occupant at 25mph.

Analysis on the Crashworthiness of the Full Rake Korean Electric Multiple Unit Train (한국형 표준전동차 전체차량의 충돌안전도 해석 연구)

  • 구정서;김동성;조현직;권태수;최성규
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • In this paper, numerically evaluated is the crashworthiness of the new design of the standard Korea Electric Multiple Unit Train(K-EMU)[developed by the Korea Railway Research Institute]. The 4-car consist of K-EMU is analyzed under collision conditions such as normal coupling, heavy shunting, light collision and heavy collision to collide against another stationary one at 5 kph, 10 kph, 25 kph and 32 kph, respectively. Energy absorbing capacity of its draftgear commercially available in the market and to be equipped in K-EMU is evaluated under each collision condition. Analytical results show that draftgear only is not enough to provide necessary energy absorbing capacity. It is therefore concluded that additional energy absorbers like mechanical fuses should be adopted to improve the crashworthiness of K-EMU.

  • PDF

Modeling of coupling device for crash analysis of an electric vehicle (전동차 충돌해석을 위한 연결장치의 모델링)

  • Kim Young-Hoon;Kim Ki-Nam;Jang Hyun-Mog;Park Yeong-Il
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.640-645
    • /
    • 2004
  • In this thesis, the impact analysis for the shunting procedure using the dynamic buffer characteristics of the coupler was developed. In this study, each car was modeled as one dimensional element by using the equivalent system. After the impact, the slip exists only between wheel and rail in the braked trainset. For this analysis the analysis code named the POTAS-MSM (Power Transmission Analysis Software Multi Slip Mechanism) which was developed for the numerical analysis of dynamic system is developed. The validation of this analysis was proven by comparing the numerical results with the results of world-famous S company which is located in Europe.

  • PDF

OPTIMIZATION OF A DRIVER-SIDE AIRBAG USING KRIGING AND TABU SEARCH METHODS (크리깅과 타부탐색법을 이용한 운전석 에어백의 최적설계)

  • Kim, Jeung-Hwan;Lee, Kwom-Hee;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1035-1040
    • /
    • 2004
  • In the proto design stage of a new car, the performance of an occupant protection system is often evaluated by CAE instead of the real test. CAE predicts and recommends the appropriate design values hence reducing the number of the real tests. However, the existing researches using CAE in predicting the performances do not consider the uncertainties of parameters, in which inconsistency between the actual test results and CAE exists. In this research, the optimization procedure of a protection system such as airbag and load limiter is suggested for the frontal collision. The DACE modeling known as Kriging interpolation is introduced to obtain the meta model of the system followed by the tabu search method to determine a global optimum. Finally, the distribution of a suggested design is determined through the Monte-Carlo Simulation.

  • PDF

Design of a Protection Fence by Crashworthiness Analysis (충돌해석을 통한 방호울타리의 설계)

  • 한석영;고성호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.487-492
    • /
    • 2002
  • In this study, designs of protection fences such as the concrete median barrier and the guardrail were performed. The foreign standard of concrete median barrier was introduced and implemented without modification fitting to domestic vehicles and highway conditions. In a car accident, median barrier doesn't protect vehicles effectively, especially for heavy vehicles such as bus and heavy truck. Guardrail doesn't protect vehicle effectively, either. The purpose of this study is to develop the optimal performance design of concrete median barrier and design of guardrail using the design of experiment as well as crashworthiness analysis which is done by Pam-Crash. As a result of this study, an optimal design of concrete median barrier was obtained considering von Mises stress, volume and COG acceleration of truck. And design of guardrail satisfying the domestic requirements was obtained.

  • PDF

Railway carbody analysis technology development for application Europe crashworthiness standard. (유럽 충돌안전도 규격 적용 철도차량 차체 해석 기술 개발)

  • Jeong, Ji-Ho;Park, Hyung-Soon;Park, Guen-Soo;Lee, Jang-Wook
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.231-237
    • /
    • 2006
  • Recently railroad industry pulls a new interest with stability, fixed time characteristic, low environment pollution characteristic and mass transportation characteristic. With industrial development railroad it joins in, The many research and regulation production are coming to do. Specially like this activities are coming to be advanced actively from North America and Europe. From viewpoint of railway car production company, The vehicle production that a suitable Europe standard is essentiality for find a Europe market that The whole vehicle consuming hold it does a most big specific gravity. From this study, developed finite element model for analysis technology about crashworthiness of inside GM/RT 2100 standard and analyzed crash results.

  • PDF

A Study on the Structural Stability of Edge Beam of U-Channel Bridge Under Impact Loads (충돌하중을 받는 U-채널 교량 측보의 구조적 안정성에 관한 연구)

  • Choi, Dong-Ho;Na, Ho-Sung;Lee, Kwang-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.333-336
    • /
    • 2008
  • U-Channel Bridge is effective bridge type, because its edge beam performs role of barrier and enables to reduce additional dead loads. Nevertheless, there is possibility of bridge collapse under impact load due to car crash. Also, edge beam must have ability to induce safe driving and prevent falling accidents. Therefore, this study carries out analysis of behavior of edge beam and slab and evaluation of structural stability under impact loads, based on Korean Highway Bridge Design Specifications and AASHTO LRFD Bridge Design Specification. According to analysis result, the maximum stress of edge beam and slab satisfies specification of allowable stress.

  • PDF

Study on the Evaluation Method of Electrical Isolation Property for High Voltage System of Green Car (친환경자동차 고전압시스템의 절연성능 평가 방법 연구)

  • Lee, Ki-Yeon;Kim, Hyang-Kon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.611-612
    • /
    • 2012
  • 친환경자동차의 고전압시스템에 대한 인체 감전 사고 예방을 위한 전기안전 평가요소는 절연성능 평가이다. 고전압시스템을 사용하는 자동차의 절연성능은 $100{\Omega}/Vdc$, $500{\Omega}/Vac$ 이상으로 규정하고 있으며, 평가방법은 UNECE WP.29의 GTR 등에서 여러 가지 방법을 제시하고 있지만, 실차에 대한 측정을 통하여 몇 가지 문제점이 도출되었다. 본 연구에서는 실차상태의 절연성능 평가의 문제점 분석을 통하여 In Use 상태와 Post Crash 상태의 실차에 대한 절연성능 평가 방법을 제시하였다.

  • PDF

An Optimum Design of a Steering Column to Minimize the Injury of a Passenger (승객 상해의 감소를 위한 승용차 조향주의 최적설계)

  • Park, Y.S;Lee, J.Y.;Park, G.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.33-44
    • /
    • 1995
  • As the occupant safety receives more attention from automobile industries. protection systems have been developed quite well. Developed protection systems must be evaluated through real tests in crash environment Since the real tests are extremely expensive. computer simulations are replaced for some prediction of the real test In the computer simulation. it is very crucial to express the real environment precisely in the modeling precess. The energy absorbing(EA) steering system has a very important rote in vehicle crashes because the occupant can hit the system directly. In this study. the EA steering system is modeled precisely. analyzed for the safely and designed by an optimization technology. First. the EA steering system is disassembled by parts and modeled by segments and joints. The segments are modeled by rigid bodies in motion and they have resistances in contact. Spring-damper elements and force-deflection curves are utilized to represent the joints. The body block test is cal lied out to validate. the modeling. When the test results are not enough for the detailed modeling. the differences between tests and simulations are minimized to calculate unknown parameters using optimization. The established model is applied to a crash simulation of a full-car model and tuned again. After the modeling is finished. components of the steering system are designed by an optimization algorithm. In the optimization process. the compound injury of a driver is defined and minimized to determine the chracteristics of the components. The second. order approximation algorithm has been adopted for the optimization.

  • PDF