• Title/Summary/Keyword: Car License Plates

Search Result 39, Processing Time 0.022 seconds

A Car License Plate Recognition Using Colors Information, Morphological Characteristic and Neural Network (컬러 정보 및 형태학적 특징과 신경망을 이용한 차량 번호판 인식)

  • Cho, Jae-Hyun;Yang, Hwang-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.304-308
    • /
    • 2010
  • In this paper, we propose a new method of recognizing the vehicle license plate using color space, morphological characteristics and ART2 algorithm. Morphological characteristics of old and/or new style vehicle license plate among the candidate regions are applied to remove noise areas using 8-directional contour tracking algorithm, then follow by the extraction of vehicle plate. From the extracted license plate area, plate morphological characteristics of each region are removed. After that, labeling algorithm to extract the individual characters are then combined. The classified individual character and numeric codes are applied to the ART2 algorithm for the learning and recognition. In order to evaluate the performance of our proposed extraction and recognition of vehicle license method, we have run experiments on 100 green plates and white plates. Experimental results shown that the proposed license plate extraction and recognition method was effective.

Novel License Plate Detection Method Based on Heuristic Energy

  • Sarker, Md.Mostafa Kamal;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1114-1125
    • /
    • 2013
  • License Plate Detection (LPD) is a key component in automatic license plate recognition system. Despite the success of License Plate Recognition (LPR) methods in the past decades, the problem is quite a challenge due to the diversity of plate formats and multiform outdoor illumination conditions during image acquisition. This paper aims at automatical detection of car license plates via image processing techniques. In this paper, we proposed a real-time and robust method for license plate detection using Heuristic Energy Map(HEM). In the vehicle image, the region of license plate contains many components or edges. We obtain the edge energy values of an image by using the box filter and search for the license plate region with high energy values. Using this energy value information or Heuristic Energy Map(HEM), we can easily detect the license plate region from vehicle image with a very high possibilities. The proposed method consists two main steps: Region of Interest (ROI) Detection and License Plate Detection. This method has better performance in speed and accuracy than the most of existing methods used for license plate detection. The proposed method can detect a license plate within 130 milliseconds and its detection rate is 99.2% on a 3.10-GHz Intel Core i3-2100(with 4.00 GB of RAM) personal computer.

Improved Method of License Plate Detection and Recognition using Synthetic Number Plate (인조 번호판을 이용한 자동차 번호인식 성능 향상 기법)

  • Chang, Il-Sik;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.453-462
    • /
    • 2021
  • A lot of license plate data is required for car number recognition. License plate data needs to be balanced from past license plates to the latest license plates. However, it is difficult to obtain data from the actual past license plate to the latest ones. In order to solve this problem, a license plate recognition study through deep learning is being conducted by creating a synthetic license plates. Since the synthetic data have differences from real data, and various data augmentation techniques are used to solve these problems. Existing data augmentation simply used methods such as brightness, rotation, affine transformation, blur, and noise. In this paper, we apply a style transformation method that transforms synthetic data into real-world data styles with data augmentation methods. In addition, real license plate data are noisy when it is captured from a distance and under the dark environment. If we simply recognize characters with input data, chances of misrecognition are high. To improve character recognition, in this paper, we applied the DeblurGANv2 method as a quality improvement method for character recognition, increasing the accuracy of license plate recognition. The method of deep learning for license plate detection and license plate number recognition used YOLO-V5. To determine the performance of the synthetic license plate data, we construct a test set by collecting our own secured license plates. License plate detection without style conversion recorded 0.614 mAP. As a result of applying the style transformation, we confirm that the license plate detection performance was improved by recording 0.679mAP. In addition, the successul detection rate without image enhancement was 0.872, and the detection rate was 0.915 after image enhancement, confirming that the performance improved.

Recognition of a New Car Plate using Color Information and Error Back-propagation Neural Network Algorithms (컬러 정보와 오류역전파 신경망 알고리즘을 이용한 신차량 번호판 인식)

  • Lee, Jong-Hee;Kim, Jin-Whan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.471-476
    • /
    • 2010
  • In this paper, we propose an effective method that recognizes the vehicle license plate using RGB color information and back-propagation neural network algorithm. First, the image of the vehicle license plate is adjusted by the Mean of Blue values in the vehicle plate and two candidate areas of Red and Green region are classified by calculating the differences of pixel values and the final Green area is searched by back-propagation algorithm. Second, our method detects the area of the vehicle plate using the frequence of the horizontal and the vertical histogram. Finally, each of codes are detected by an edge detection algorithm and are recognized by error back-propagation algorithm. In order to evaluate the performance of our proposed extraction and recognition method, we have run experiments on a new car plates. Experimental results showed that the proposed license plate extraction is better than that of existing HSI information model and the overall recognition was effective.

Locating Car License Plates with Neural Networks (신경망을 이용한 자동차 번호판 추출)

  • 김갑기;김광인;김항준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.476-478
    • /
    • 1999
  • 본 논문에서는 신경망을 이용하여 자동차 번호판을 찾는 방법을 제안한다. 신경망은 영상의 윈도우들을 분석하기 위한 필터로 사용되며 이 윈도우가 번호판을 포함하는지의 여부를 결정한다. 후 처리기는 필터링된 영상들로부터 번호판의 최종 위치를 지정한다. 신경망을 이용한 필터링 방법은 잡음이 많은 영상과 해상도가 ?은 영상을 처리할 때 유용하다. 주차장과 도로상에서 자동차 영상들을 실험한 결과 각각 96%와 92.0%의 확률로 번호판을 추출했다. 이 실험결과에서는 제안된 방법이 현실 세계의 상황에 유용함을 제시한다.

  • PDF

The Extraction of Car License Plates and the Separation of Characters (차량 번호판의 영역 추출 및 문자 분할에 관한 연구)

  • 권숙연;이화진;전병환
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.457-462
    • /
    • 2000
  • 교통 법규 위반 단속이나 주차 관리를 위한 차량 번호판 인식 시스템을 구현하기 위해서는 크게 차량 번호판 추출, 문자 분할, 문자 인식의 세부분으로 이루어진다. 본 논문에서는 차량 번호판 인식 시스템의 구현을 위해 번호판 영역의 색상정보를 이용하여 차량 번호판을 추출하는 방법을 제안하고, 번호판 영역 문자들의 사전 정보와 색상성분을 사용하여 정확하게 번호판 문자 분할을 하는 방법을 제안한다. 자가용과 영업용 차량 영상을 주간/dirks 및 정면/후면으로 나누어 다양하게 취득하여 실험한 결과, 94.6%의 번호판 추출률과 86.8%의 문자분할률을 얻었다.

  • PDF

An image enhancement Method for extracting multi-license plate region

  • Yun, Jong-Ho;Choi, Myung-Ryul;Lee, Sang-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3188-3207
    • /
    • 2017
  • In this paper, we propose an image enhancement algorithm to improve license plate extraction rate in various environments (Day Street, Night Street, Underground parking lot, etc.). The proposed algorithm is composed of image enhancement algorithm and license plate extraction algorithm. The image enhancement method can improve an image quality of the degraded image, which utilizes a histogram information and overall gray level distribution of an image. The proposed algorithm employs an interpolated probability distribution value (PDV) in order to control a sudden change in image brightness. Probability distribution value can be calculated using cumulative distribution function (CDF) and probability density function (PDF) of the captured image, whose values are achieved by brightness distribution of the captured image. Also, by adjusting the image enhancement factor of each part region based on image pixel information, it provides a function that can adjust the gradation of the image in more details. This processed gray image is converted into a binary image, which fuses narrow breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour by using morphology operations. Then license plate region is detected based on aspect ratio and license plate size of the bound box drawn on connected license plate areas. The images have been captured by using a video camera or a personal image recorder installed in front of the cars. The captured images have included several license plates on multilane roads. Simulation has been executed using OpenCV and MATLAB. The results show that the extraction success rate is more improved than the conventional algorithms.

Recognition of Car License Plates using Intensity Variation and Color Information (명암변화와 칼라정보를 이용한 차량 번호판 인식)

  • Kim, Pyeoung-Kee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3683-3693
    • /
    • 1999
  • Most recognition methods of car licence plate have difficulties concerning plate recognition rates and system stability in that restricted car images are used and good image capture environment is required. To overcome these difficulties, I proposed a new recognition method of car licence plates, in which both intensity variation and color information are used. For a captured car image, multiple candidate plate-bands are extracted based on the number of intensity variation. To have an equal performance on abnormally dark and bright Images. plate lightness is calculated and adjusted based on the brightness of plate background. Candidate plate regions are extracted using contour following on plate color pixels in oath plate band. A candidate region is decided as a real plate region after extracting character regions and then recognizing them. I recognize characters using template matching since total number of possible characters is small and they art machine printed. To show the efficiency of the proposed method, I tested it on 200 car images and found that the method shows good performance.

  • PDF

Study on Performance Evaluation of Automatic license plate recognition program using Emgu CV (Emgu CV를 이용한 자동차 번호판 자동 인식 프로그램의 성능 평가에 관한 연구)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1209-1214
    • /
    • 2016
  • LPR(License plate recognition) is a kind of the most popular surveillance technology based on accompanied by a video and video within the optical character recognition. LPR need a many process. One is a localization of car license plates, license plate of size, space, contrast, normalized to adjust the brightness, another is character division for recognize the character optical character recognition to win the individual characters, character recognition, the other is phrase analysis of the shape, size, position by year, the procedure for the analysis by comparing the database of license plate having a difference by region. In this paper, describing the results of performance of license plate recognition S/W, which was implemented using EmguCV, find the location, using the tesseract OCR, which are well known to an optical character recognition engine of open source, the characters of the license plate image capturing angle of the plate, image size, brightness.

Efficient Parking Management through The Investigation of Car License Plate Using Camera (카메라를 이용한 차량 번호판 조사를 통한 효율적 주차 관리)

  • Lee, Kang-Ho;Shin, Seong-Yoon;Choi, Byeong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.145-151
    • /
    • 2013
  • This research is to suggest a method for investigating car number plates among the information managed in parking facilities. The investigation of car number plate is generally used to know how long vehicles are parked. Also, it can provide the information about the parking turnover rate and the mean parking duration of parked vehicles. This research performs the investigation using cameras at a distance of time. That is, the given distance of time from cameras is assigned to each parked vehicle, and then it can find the mean parking time of parked vehicles. Also, it can check the parking turnover rate of parked vehicles at a space unit of parking lot in an hour. The information such as the mean parked duration and the parking turnover rate of parked vehicles taken from this method is helpful to find and understand the inefficient use of parking facilities. With this suggested method, this research attempted to check the mean parking duration and the parking turnover rate of parked vehicles.