• Title/Summary/Keyword: Capture efficiency

Search Result 341, Processing Time 0.021 seconds

Characteristics of Heat Stable Salts Treatment Using Anion Exchange Resins in CO2 Absorption Process (음이온교환수지를 이용한 CO2 흡수 공정시 발생하는 열안정성염 처리 특성)

  • Park, Kyung-Bin;Cho, Jun-Hyoung;Jeon, Soo-Bin;Lim, You-Young;OH, Kwang-Joong
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.22-32
    • /
    • 2015
  • In this study, we studied the characteristics of ion exchange for treatment of HSS (heat stable salts) which cause performance reduction in CO2 gas capture amine solution using anion exchange resins. The optimum HSS removal efficiency, 96.1% was obtained when using strong base anion exchange resin SAR10 at dosage 0.05 g/mL, 316 K, pH 12 and the best resin regeneration efficiency, 78.8% was obtained using NaOH solution of 3 M at 316 K. The adsorption data were described well by the Freundlich model and the sorption intensity(n) was 2.0951 lying within the range of favorable adsorption. The adsorption selectivity coefficients were increased by increasing valences and size of ion and desorption selectivity coefficients showed a contradictory tendency to adsorption selectivity coefficients. By continuous HSS removal experiments, 13.3 BV of HSS contaminated solution was effectively treated and the optimum NaOH solution consumption was 5.2 BV to regenerate resins.

Cooling and Antisolvent Crystallization of Potassium Bicarbonate in the Presence of Sterically Hindered Alkanolamines (입체 장애 알카놀아민 혼합 수용액에서 중탄산칼륨 결정의 냉각 반용매 결정화)

  • Jo, Chang Sin;Jung, Taesung;Yoon, Hyoung Chul;Kim, Jong-Nam;Rhee, Young Woo
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.383-389
    • /
    • 2014
  • $CO_2$ absorption processes have a good potential for large scale capture of $CO_2$ but a large amount of absorbing solution has to be regenerated, undesirably increasing the consumption of energy such as sensible heat and latent heat of vaporization. In this study, a cooling crystallization process which would separate the $CO_2$-rich potassium bicarbonate crystals from $CO_2$-lean water was developed to reduce the energy penalty. Sterically hindered alkanolamine additives were used to enhance the $CO_2$ removal efficiency and their antisolvent effect on the crystallization was found in a continuous cooling crystallizer. The production yields of crystals were increased in the sequence of 2-amino-2-methyl-1-propanol (AMP) < 2-amino-2-methyl-1,3-propanediol (AMPD) < 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), which are related to the number of hydroxyl groups in the additive molecules. Using $^{13}carbon$ nuclear magnetic resonance, the additives favored the formation of bicarbonate ions by steric hindrance effect and increased the supersaturation of $KHCO_3$. It is shown that the additives increase the mean size of crystals and crystal growth rate by increasing supersaturation. The additives are promising for enhancing the $CO_2$ removal efficiency and reducing the regeneration energy cost of $CO_2$ absorbing solution by promoting $KHCO_3$ crystallization.

A Study on the Fine Dust Removal Equipment of Pressurized Water type for the Removal of Exhaust Gas Fine Dust and Volatile Organic Compounds from the Non-industrial combustion plant (비산업 연소 사업장 배출 가스상 미세먼지와 휘발성 유기 화합물 제거를 위한 가압수식 미세먼지 제거 장치 연구)

  • Youn, Jae-Seo;Kim, Sang-Min;Lee, Ye-Ji;Noh, Seong-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.506-512
    • /
    • 2018
  • The fine dust generated in the home and restaurant business occupies a low ratio of about 4% of the total fine dust emissions. However, at the foodservice business, the rate of change of the pollutant concentration is very high, so that the temporary fine dust concentration can be measured up to 60 times. The pollutants generated from non-industrial combustion plants consist of particulate fine dust and gaseous organic compounds. To remove these pollutants, cleaning dust collection system, which is an effective system for simultaneous removal of gaseous and particulate matter, is applied. This is a method of increasing the probability of diffusion capture of the Brownian motion by pressurized liquid injection method using the atomizing nozzle. The dust removal efficiency of the fine dust collecting system was analyzed by nozzle spraying air pressure condition and angle using the manufactured fine dust removing system. As a result, it was confirmed that the efficiency of removal of fine dust and gaseous organic compounds was more than 90%. The developed system is expected to be highly usable in the future because it can remove particulate dust from the existing plant hood system without any installation cost.

Land Cover Mapping and Availability Evaluation Based on Drone Images with Multi-Spectral Camera (다중분광 카메라 탑재 드론 영상 기반 토지피복도 제작 및 활용성 평가)

  • Xu, Chun Xu;Lim, Jae Hyoung;Jin, Xin Mei;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.589-599
    • /
    • 2018
  • The land cover map has been produced by using satellite and aerial images. However, these two images have the limitations in spatial resolution, and it is difficult to acquire images of a area at desired time because of the influence of clouds. In addition, it is costly and time-consuming that mapping land cover map of a small area used by satellite and aerial images. This study used multispectral camera-based drone to acquire multi-temporal images for orthoimages generation. The efficiency of produced land cover map was evaluated using time series analysis. The results indicated that the proposed method can generated RGB orthoimage and multispectral orthoimage with RMSE (Root Mean Square Error) of ${\pm}10mm$, ${\pm}11mm$, ${\pm}26mm$ and ${\pm}28mm$, ${\pm}27mm$, ${\pm}47mm$ on X, Y, H respectively. The accuracy of the pixel-based and object-based land cover map was analyzed and the results showed that the accuracy and Kappa coefficient of object-based classification were higher than that of pixel-based classification, which were 93.75%, 92.42% on July, 92.50%, 91.20% on October, 92.92%, 91.77% on February, respectively. Moreover, the proposed method can accurately capture the quantitative area change of the object. In summary, the suggest study demonstrated the possibility and efficiency of using multispectral camera-based drone in production of land cover map.

Characteristics of Filtration Treatment Using Diatomite Filter Aids for Sewage Water Reuse (하수처리수 재이용을 위한 가압식 규조토 여과의 처리성능평가)

  • Lim, Byung Ran;Kim, Hee Seo;Go, Yeon Sil;Kim, Hyun Kab;Kim, Jong Hak;Lee, Tae Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.145-151
    • /
    • 2019
  • The purpose of this study was to investigate treatment characteristics of diatomite filtration, that would allow water recovery from biologically-treated effluent for reuse. Diatomite, Celpure 100, and acid clay were used as filter-aids, with a support filter manufactured from polyethylene (PE), and polypropylene (PP). This pre-coating process using diatomite filter-aids, is used in the filtration range of pressure filters, and has consistently provided high-quality separation. The results showed that variations in average removal efficiency of SS, and T-P from biologically treated effluent by the diatomite-coated PE filter, were approximately 82.2 ~ 88.9 % and 4.8 ~ 21.1 %, respectively. T-P treatment efficiency of the PP filter pre-coated with diatomite and $Celpure^{(R)}100$ at $57.64g/m^2$, was approximately $24{\pm}10%$ and $40{\pm}15%$ on average, respectively. Particle size distribution of secondary effluent varied from 0.05 to $200{\mu}m$, and $d_{50}$ value was $20.76{\mu}m$. The size distribution of particles in the diatomite filtrate ranged from 1.26 to $101.1{\mu}m$ when pre-coated with diatomite filter-aid, at a content of $57.64g/m^2$. Diatomite filter aids, i.e., the particles that form the pre-coating layer, capture very fine particles as well as macromolecules, owing to their complex structure with numerous fine microscopic pores, and surface properties. The filtration process using diatomite and $Celpure^{(R)}100$ as filter aids, has been successfully applied, to recover water from sewage for reuse. The disadvantage of the process, is that the particle size of the filter-aid is spent, because of pressurization.

Evaluation of the Removal Characteristics of Pollutants in Storm Runoff Depending on the Media Properties (여재 특성에 따른 강우 유출수 내 오염물질 제거특성 평가)

  • Kim, Tae-Gyun;Cho, Kang-Woo;Song, Kyung-Guen;Yoon, Min-Hyuk;Ahn, Kyu-Hong;Hong, Sung-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.483-490
    • /
    • 2009
  • The aims of this study were to evaluate the removal efficiency for various pollutants in urban storm runoff by a filtration device, and to determine design parameters depending on filter media properties. Appropriate selection of filter media will affect the size and life time of the filtration device. Sets of column tests were performed in order to evaluate the removal efficiency by perlite and a synthetic resin. An investigation of surface properties including CEC (cation exchange capacity) and zeta-potential suggested that the perlite had a superior adsorption capability for cationic pollutants. TCODcr and turbidity were analyzed to investigate the removal characteristic of particulate pollutant. In both columns, the particles in the collected storm runoff was almost completely capture with a small EBCT (empty bed contact time) of 2.5 minutes. Complete clogging at the EBCT of 2.5 minutes occurred after 630 minutes in the perlite column and 810 minutes in the resin column. The removal efficiency of TCODcr and turbidity at the EBCT of 2.5 minutes decreased to below 70% due to an wall effect. The removal efficiency for dissolved pollutant (SCODcr) was negligible due to the insufficient contact time for adsorption. The removal of heavy metals (Cu, Zn, Pb) was mostly ascribed to the filtration of particles containing metals, since the relationship between CEC and the removal efficiency was not apparent. The result of this study would be valuable for the application of filtration device to control of urban storm runoff.

Simultaneous Removal of SOx and NOx in Flue Gas of Oxy-fuel Combustion by Direct Contact Condenser (직접접촉식 응축기를 통한 가압순산소 연소 배가스 내 SOx, NOx 동시저감 연구)

  • Choi, Solbi;Mock, Chinsung;Yang, Won;Ryu, Changkook;Choi, Seuk-Cheon
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • Pressurized oxy-fuel combustion is a promising technology for $CO_2$ capture with a benefit of improving power plant efficiency compared with atmospheric oxy-fuel combustion. Prior to $CO_2$ compression in this process, a flue gas condenser (FGC) is used to remove $H_2O$ while recovering the latent heat. At the same time, the FGC has a potential for high-efficiency removal of $SO_x$ and $NO_x$ by exploiting their good solubility in water. In this study, experiments were carried out in a lab-scale, direct contact FGC under different pressures varying between 1 and 20 bar to evaluate the removal efficiency of $SO_2$ and $NO_x$ for individual gases and their mixture. In the tests for individual gases, 20% and 76% of $NO_x$ was removed at 1 bar and 10 bar, respectively. Even higher removal efficiencies were achieved for $SO_2$, and also these were maintained for longer as the pressure increased. In the tests for $SO_2$ and $NO_x$ mixture, the removal efficiency of $NO_x$ increased from 13% at 1 bar to 56% at 20 bar because of higher solubility at elevated pressures. $SO_2$ in the mixture was initially dissolved almost completely and then increased by 1,219 ppm at 1 bar and by 165 ppm at 20 bar. Overall, the removal efficiency of $SO_2$ and $NO_x$ was increased at elevated pressures, but it was lower in the mixture compared with individual gases at identical conditions because of a lower pH and associated chemical reactions in water.

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.

Characteristics of Coal Slurry Gasification under Partial Slagging Operating Condition (부분 용융 운전 조건에서 석탄슬러리 가스화 운전 특성)

  • Lee, Jin Wook;Chung, Seok Woo;Lee, Seung Jong;Jung, Woohyun;Byun, Yong Soo;Hwang, Sang Yeon;Jeon, Dong Hwan;Ryu, Sang Oh;Lee, Ji Eun;Jeong, Ki Jin;Kim, Jin Ho;Yun, Yongseung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.657-666
    • /
    • 2014
  • Coal gasification technology is considered as next generation clean coal technology even though it uses coal as fuel which releases huge amount of greenhouse gas because it has many advantages for carbon capture. Coal or pet-coke slurry gasification is very attractive technology at present and in the future because of its low construction cost and flexibility of slurry feeding system in spite of lower efficiency compared to dry feeding technology. In this study, we carried out gasification experiment using bituminous coal slurry sample by integrating coal slurry feeding facility and slurry burner into existing dry feeding compact gasifier. Especially, our experiment was conducted under fairly lower operation temperature than that of existing entrained-bed gasifier, resulting in partial slagging operation mode in which only part of ash was converted to slag and the rest of ash was released as fly ash. Carbon conversion rate was calculated from data analysis of collected slag and ash, and then cold gas efficiency, which is the most important indicator of gasifier performance, was estimated by carbon mass balance method. Fairly high performance considering pilot-scale experiment, 98.5% of carbon conversion and 60.4% of cold gas efficiency, was achieved. In addition, soundness of experimental result was verified from the comparison with chemical equilibrium composition and energy balance calculations.

Cloud Computing Adoption and Job Performance based on Diffusion of Innovation Theory (한국 중소기업의 클라우드 컴퓨팅 오피스환경 도입에 따른 확산요인이 업무성과에 미치는 영향)

  • Kim, Jong Mok;Lee, Junkwan;Kim, Hyung Jae
    • International Area Studies Review
    • /
    • v.21 no.1
    • /
    • pp.97-117
    • /
    • 2017
  • This research highlights the process of adopting cloud computing technology from users' perspective. Concentrating on perceived mechanism from employees side that lead to job performance at work. Cloud computing, the new player in our modern business environment, authors employ diffusion of innovation theory to capture how this new technology affect employees in workplace in terms of job performance. Education for this new system and managerial support by firm were used as moderating variable to test dependent variable, job performance. Research was done through survey from total 284 people working in metropolitan area at South Korea. The result shows that cloud computing system affect positively on work efficiency, and the extent of diffusion factors that influence from the most to least are as follow: 1. Users' Skill, 2. System Quality, 3. Information Quality, 4. Group Awareness, 5. Attitude towards New System. To test diffusion factors of cloud computing and job performance, South Korean people actually felt that cloud computing help their job performance and the extent of diffusion factors that influence from the most to least are as follow: 1. Users' Skill, 2. System Quality, 3. Information Quality, 4. Attitude towards New System, 5. Group Awareness. As for diffusion factors of cloud computing and productivity, result proved that cloud computing really helps firms, and the extent of diffusion factors that influence from the most to least are as follow: 1. Information Quality, 2. Attitude towards New System, 3. Group Awareness, 4. System Quality, 5. Users' Skill. Two moderating variables, employee education and managerial support were tested to prove whether these two variables affect the job performance and the result displays positive affect for both two factors. To conclude, adopting cloud computing helps firms by increase employees' work efficiency and job performance. In order to accelerate the process employees education really matters because users' skill is the most crucial among diffusion factors.