• Title/Summary/Keyword: Captive model test

Search Result 58, Processing Time 0.024 seconds

Evaluation of Dynamic Characteristics for a Submerged Body with Large Angle of Attack Motion via CFD Analysis

  • Jeon, Myungjun;Mai, Thi Loan;Yoon, Hyeon Kyu;Ryu, Jaekwan;Lee, Wonhee;Ku, Pyungmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.313-326
    • /
    • 2021
  • A submerged body with varied control inputs can execute large drift angles and large angles of attack, as well as basic control such as straight movement and turning. The objective of this study is to analyze the dynamic characteristics of a submerged body comprising six thrusters and six control planes, which is capable of a large drift angle and angle of attack motion. Virtual captive model tests via were analyzed via computational fluid dynamics (CFD) to determine the dynamic characteristics of the submerged body. A test matrix of virtual captive model tests specialized for large-angle motion was established. Based on this test matrix, virtual captive model tests were performed with a drift angle and angle of attack of approximately 30° and 90°, respectively. The characteristics of the hydrodynamic force acting on the horizontal and vertical surfaces of the submerged body were analyzed under the large-angle motion condition, and a model representing this hydrodynamic force was established. In addition, maneuvering simulation was performed to evaluate the standard maneuverability and dynamic characteristics of large-angle motion. Considering the shape characteristics of the submerged body, we attempt to verify the feasibility of the analysis results by analyzing the characteristics of the hydrodynamic force when the large-angle motion occurred.

Estimation of Ground Clutter Reflectivity based on the CFT(Captive Flight Test) (항공기 탑재 시험을 통한 지상 클러터 반사계수 추정)

  • Son, Chang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.87-95
    • /
    • 2006
  • The performance of a microwave missile seeker and radar operating in an air-to-air look-down mode is strongly influenced by the presence of ground clutter In order to correctly account for the effects of ground clutter, it is required to develop a model capable of representing clutter characteristics as a function of range and/or frequency. In this paper, a program to estimate the clutter reflectivity for various ground conditions is developed, using the actually measured data and the data available from open literatures. In addition, clutter characteristics measured for various ground conditions such as sea, agricultural area, urban city and industrial area through the captive flight tests are presented.

A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

  • Lee, Sungwook;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.466-477
    • /
    • 2015
  • In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV) is presented. Planar Motion Mechanism (PMM) captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM) calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.

Experimental Investigation of the Hydrodynamic Characteristics of a Ship due to Bank Effect

  • Vo, Anh Khoa;Mai, Thi Loan;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Navigation and Port Research
    • /
    • v.46 no.2
    • /
    • pp.82-91
    • /
    • 2022
  • When a ship moves in the proximity of the lateral bank, bank suction forces are generated due to bank effects. Thus, hydrodynamic forces can significantly impact the ship's maneuverability and navigation safety. In this study, model tests were performed to investigate the hydrodynamic forces exerted on a ship, especially suction forces caused by bank effects, using captive model and bank effect tests. A low-speed condition was selected in this study, because of the perilous situation as the ship moves close to the bank. The accuracy of the hydrodynamic forces exerted on the hull was verified, by comparing the results of the static drift test with the results obtained from other institutes at design speed. The straight simulation caused by bank effects was then implemented using estimated hydrodynamic coefficients.

Analysis on Hydrodynamic Force Acting on a Catamaran at Low Speed Using RANS Numerical Method

  • Mai, Thi Loan;Nguyen, Tien Thua;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.53-64
    • /
    • 2020
  • This paper discusses the hydrodynamic characteristics of a catamaran at low speed. In this study, the Delft 372 catamaran model was selected as the target hull to analyze the hydrodynamic characteristics by using the RANS (Reynold-Averaged Navier-Stokes) numerical method. First, the turbulence study and mesh independent study were conducted to select the appropriate method for numerical calculation. The numerical method for the CFD (Computational Fluid Dynamic) calculation was verified by comparing the hydrodynamic force with that obtained experimentally at high speed condition and it rendered a good agreement. Second, the virtual captive model test for a catamaran at low speed was conducted using the verified method. The drift test with drift angle 0-180 degrees was performed and the resulting hydrodynamic forces were compared with the trends of other ship types. Also, the pure rotating test and yaw rotating test proposed by Takashina, (1986) were conducted. The Fourier coefficients obtained from the measured hydrodynamic force were compared with those of other ship types. Conversely, pure sway test and pure yaw test also were simulated to obtain added mass coefficients. By analyzing these results, the hydrodynamic coefficients of the catamaran at low speed were estimated. Finally, the maneuvering simulation in low speed conditions was performed by using the estimated hydrodynamic coefficients.

Study on the Maneuverability of Barge by Captive Model Test (구속모형실험을 통한 부선의 조종성능 추정)

  • Yun, Kun-Hang;Kim, Yeon-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.613-618
    • /
    • 2012
  • For the tug-barge simulation, captive model test(Horizontal Planar Motion Mechanism) of the barge model is carried out. From the result of HPMM test, a resistance coefficient, maneuvering coefficients of the barge are obtained. A mathmatical model of the barge is validated by turning simulations with different angle of towing line applied a simple towing line model and the tactical diameter compared to sea trial data. As a result, the tactical diameter of the barge is smaller as the angle of towing line is bigger. The tactical diameter from simulations is smaller than that from sea trial data, may be caused by increased displacement of the barge.

Virtual simulation of maneuvering captive tests for a surface vessel

  • Hajivand, Ahmad;Mousavizadegan, S. Hossein
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.848-872
    • /
    • 2015
  • Hydrodynamic derivatives or coefficients are required to predict the maneuvering characteristics of a marine vehicle. These derivatives are obtained numerically for a DTMB 5512 model ship by virtual simulating of captive model tests in a CFD environment. The computed coefficients are applied to predict the turning circle and zig-zag maneuvers of the model ship. The comparison of the simulated results with the available experimental data shows a very good agreement among them. The simulations show that the CFD is precise and affordable tool at the preliminary design stage to obtain maneuverability performance of a marine vehicles.

Study on the Estimation of Autonomous Underwater Vehicle's Maneuverability Using Vertical Planar Motion Mechanism Test in Self-Propelled Condition (자항상태 VPMM 시험을 통한 무인잠수정 조종성능 추정에 관한 연구)

  • Park, Jongyeol;Rhee, Shin Hyung;Lee, Sungsu;Yoon, Hyeon Kyu;Seo, Jeonghwa;Lee, Phil-Yeob;Kim, Ho Sung;Lee, Hansol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The present study aims to improve the accuracy of the maneuvering simulations based on captive model test results. To derive the hydrodynamic coefficients in a self-propelled condition, a mathematical maneuvering model using a whole vehicle model was established. Captive model tests were carried out using the Vertical Planar Motion Mechanism (VPMM) equipment. A motor controller was used to control the constant propeller revolution rate during pure motion tests. The resistance tests, self-propulsion tests, static drift tests, and VPMM tests were performed in the towing tank of Seoul National University. When the vertical drift angle changes, the gravity load on the sensors were changed. The hydrodynamic forces were deduced by subtracting the gravity load from the measured forces. The hydrodynamic coefficients were calculated using the least-square method. The simulation of the turning circle test was compared with the free-running model test result, and the error of the turning radius was 8.3 % compared to the free-running model test.

Tune of Hydrodynamic Coefficients Based on Empirical Formula by Using Manoeuvring Performance Indices of a Ship (선박 조종성능지수를 활용한 경험식 기반 유체력 미계수의 보정)

  • Kim, Dong Jin;Kim, Yeon Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.331-344
    • /
    • 2020
  • Ship's hydrodynamic coefficients in manoeuvring equations are generally derived by captive model tests or numerical calculations. Empirical formulas have been also proposed in some previous researches, which were useful for practical predictions of hydrodynamic coefficients of a ship by using main dimensions only. In this study, ship's hydrodynamic coefficients based on empirical formulas were optimized by using its free running test data. Eight manoeuvring performance indices including steady turning radius, reach in zig-zag as well as well-known IMO criteria indices are selected in order to compare simulation results with free runs effectively. Sensitivities of hydrodynamic coefficients on manoeuvring performance indices are analyzed. And hydrodynamic coefficients are tuned within fixed bounds in order of sensitivity so that they are tuned as little as possible. Linear and nonlinear coefficients are successively tuned by using zig-zag and turning performance indices. Trajectories and velocity components by simulations with tuned hydrodynamic coefficients are in good agreements with free running tests. Tuned coefficients are also compared with coefficients by captive model tests or RANS calculations in other previous researches, and the magnitudes and signs of tunes are discussed.

Estimation of a 9.77 G/T Small Fishing Vessel's Operating Performance Depending on Forward Speed Based on 3-DoF Captive Model Tests (9.77톤급 소형어선의 3자유도 구속모형시험을 통한 선속 별 운항성능 추정)

  • Dong-Jin Kim;Haeseong Ahn;Kyunghee Cho;Dong Jin Yeo
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.305-314
    • /
    • 2023
  • In this study, a mathematical model of a 9.77 G/T small fishing vessel was established based on captive model tests. The powering and manoeuvring performances of the vessel in the harbor and coastal sea were focused on, so captive model tests were conducted up to the full-scale speed of 8 knots. Propeller open water, resistance, and self-propulsion tests of a 1/3.5-scaled model ship were performed in a towing tank, and the full-scale powering performance was predicted. Hydrodynamic coefficients in the mathematical model were obtained by rudder open water, horizontal planar motion mechanism tests of the same model ship. In particular, in static drift and pure yaw tests which were conducted at a speed of 2 to 8 knots, the linear hydrodynamic coefficients varied with the ship speed. The effect of the ship speed on the linear coefficients was considered in the mathematical model, and manoeuvring motions, such as turning circles and zig-zags, were simulated with various approach speeds and analyzed.