• 제목/요약/키워드: Capsicum disease

검색결과 93건 처리시간 0.03초

New role of LTR-retrotransposons for emergence and expansion of disease-resistance genes and high-copy gene families in plants

  • Kim, Seungill;Choi, Doil
    • BMB Reports
    • /
    • 제51권2호
    • /
    • pp.55-56
    • /
    • 2018
  • Long terminal repeat retrotransposons (LTR-Rs) are major elements creating new genome structure for expansion of plant genomes. However, in addition to the genome expansion, the role of LTR-Rs has been unexplored. In this study, we constructed new reference genome sequences of two pepper species (Capsicum baccatum and C. chinense), and updated the reference genome of C. annuum. We focused on the study for speciation of Capsicum spp. and its driving forces. We found that chromosomal translocation, unequal amplification of LTR-Rs, and recent gene duplications in the pepper genomes as major evolutionary forces for diversification of Capsicum spp. Specifically, our analyses revealed that the nucleotide-binding and leucine-rich-repeat proteins (NLRs) were massively created by LTR-R-driven retroduplication. These retoduplicated NLRs were abundant in higher plants, and most of them were lineage-specific. The retroduplication was a main process for creation of functional disease-resistance genes in Solanaceae plants. In addition, 4-10% of whole genes including highly amplified families such as MADS-box and cytochrome P450 emerged by the retroduplication in the plants. Our study provides new insight into creation of disease-resistance genes and high-copy number gene families by retroduplication in plants.

Inheritance of Anthracnose Resistance in a New Genetic Resource, Capsicum baccatum PI594137

  • Kim, Sang-Hoon;Yoon, Jae-Bok;Park, Hyo-Guen
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.13-16
    • /
    • 2008
  • Pepper fruit anthracnose caused by Colletotrichum species is an economically important disease that causes serious yield loss and quality deterioration in many Asian countries including South Korea and Taiwan. Recently, Capsicum baccatum PI594137 was found to exhibit broad-spectrum resistance to Colletotrichum acutatum. The inheritance of anthracnose resistance to C. acutatum was analyzed in an intraspecific population derived from a cross between C. baccatum Golden-aji and PI594137. Detached mature green fruits were inoculated using the microinjection method. The disease response was evaluated as the disease incidence and the overall lesion diameter at 7 days after inoculation(DAI). The segregation ratios of resistance and susceptibility to C. acutatum in the $F_2$ and $BC_s$ populations significantly fit a 3:1 Mendelian model. This result indicates that the resistance of PI594137 to C. acutatum is controlled by a single dominant gene.

  • PDF

Development of InDel markers to identify Capsicum disease resistance using whole genome resequencing

  • Karna, Sandeep;Ahn, Yul-Kyun
    • Journal of Plant Biotechnology
    • /
    • 제45권3호
    • /
    • pp.228-235
    • /
    • 2018
  • In this study, two pepper varieties, PRH1 (powdery mildew resistance line) and Saengryeg (powdery mildew resistance line), were resequenced using next generation sequencing technology in order to develop InDel markers. The genome-wide discovery of InDel variation was performed by comparing the whole-genome resequencing data of two pepper varieties to the Capsicum annuum cv. CM334 reference genome. A total of 334,236 and 318,256 InDels were identified in PRH1 and Saengryeg, respectively. The greatest number of homozygous InDels were discovered on chromosome 1 in PRH1 (24,954) and on chromosome 10 (29,552) in Saengryeg. Among these homozygous InDels, 19,094 and 4,885 InDels were distributed in the genic regions of PRH1 and Saengryeg, respectively, and 198,570 and 183,468 InDels were distributed in the intergenic regions. We have identified 197,821 polymorphic InDels between PRH1 and Saengryeg. A total of 11,697 primers sets were generated, resulting in the discovery of four polymorphic InDel markers. These new markers will be utilized in order to identify disease resistance genotypes in breeding populations. Therefore, our results will make a one-step advancement in whole genome resequencing and add genetic resource datasets in pepper breeding research.

Resistance to Anthracnose Caused by Colletotrichum acutatum in Chili Pepper(Capsicum annuum L.)

  • Kim, Sang-Hoon;Yoon, Jae-Bok;Do, Jae-Wahng;Park, Hyo-Guen
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.277-280
    • /
    • 2007
  • Pepper fruit anthracnose, caused by Colletotrichum acutatum, results in serious yield loss and affects crop quality in many Asian countries, making it a disease of economic consequence. A source resistant to C. acutatum was identified by the AVRDC within the line Capsicum chinense Jacq. PBC932. The resistant breeding line C. annuum AR is the $BC_3F_6$ generation derived from C. chinense Jacq. PBC932. The inheritance of resistance to C. acutatum was analyzed in segregating populations derived from the two crosses HN 11$\times$AR and Daepoong-cho$\times$AR. Detached mature green fruits were inoculated using microinjection method. The disease response was evaluated as the disease incidence at 7 DAI. The segregation ratios of resistance and susceptibility to C. acutatum in the $F_2$ and $BC_R$ populations derived from the two crosses fit significantly to a 1:3 Mendelian model. This indicates that the resistance of AR to C. acutatum is controlled by a single recessive gene.

  • PDF

고추의 발아 및 역병 발생에 미치는 인공산성비의 영향 (Effect of Simulated Acid Rain Treatment on the Germination Rate and the Phytophthora Rot of Capsicum annum)

  • 차병진
    • 한국환경농학회지
    • /
    • 제15권2호
    • /
    • pp.207-216
    • /
    • 1996
  • 인공산성비의 pH가 낮아질수록 고추씨의 발아에 걸리는 시간은 단축되었으며 발아율은 향상되었으나 어린 싹에게는 매우 치명적인 영향을 미쳤다. 어린 고추모는 이미 자란 식물체에 비하여 산성비에 훨신 더 민감하게 작용하였다. 산성비의 전형적인 가시피해증상은 잎에 나타나는 흰색 반점이었으며, 빗물의 pH가 낮을수록 더 빨리 더 심하게 나타났다. 고추의 역병은 일반적으로 인공산성비 처리구에서 대조구보다 빨리 발병하였으나, 인공산성비의 pH가 아주 낮을 때는 다른 처리구에 비하여 오히려 병의 발생이 줄어들었다. 인공산성비 처리중에 역병을 접종하였을 때는 처리 전에 접종하였을 때보다 병이 더 빨리, 더 심하게 나타났다. 역병의 발생이 가장 심했던 것은 역병의 접종시기와는 관계없이 pH 4.0 또는 4.5인 빗물을 처리하였을 때였다.

  • PDF

Erwinia carotovora subsp. carotovora에 의한 고추 마디 무름병 (Bacterial Node Soft Rot of Pepper (Capsicum annuum L.) Caused by Erwinia carotovora subsp. carotovora)

  • 정기채;임진우;김승한;임양숙;김종완
    • 한국식물병리학회지
    • /
    • 제14권6호
    • /
    • pp.741-743
    • /
    • 1998
  • A bacterial disease of pepper (Capsicum annuum L.) that rooted the stem nodes to black was found in pepper plants which cultivated in plastic house at Chungdo, Kyungpook, Korea in March, 1998. Bacterial isolates derived from the diseased peppers were pathogenic to potato, eggplant and Chinese cabbage but, was not pathogenic to chrysanthemum by artificial inoculation. On the basis of bacteriological characteristics and pathogenicity test on host plants, the causal organism of the node soft rot of pepper is identified as Erwinia carotovora subsp. carotovora and the name of disease is proposed as bacterial node soft rot of pepper.

  • PDF

Pathotypes of Bacterial Spot Pathogen Infecting Capsicum Peppers in Korea

  • Wai, Khin Pa Pa;Siddique, Muhammad Irfan;Mo, Hwang-Sung;Yoo, Hee Ju;Byeon, Si-Eun;Jegal, Yoonhyuk;Mekuriaw, Alebel A.;Kim, Byung-Soo
    • The Plant Pathology Journal
    • /
    • 제31권4호
    • /
    • pp.428-432
    • /
    • 2015
  • Sixty-seven isolates of bacterial spot pathogen (Xanthomonas spp.) collected from six provinces of Korea were tested for the identification of their pathotypes and determination of their distribution throughout Korea in an effort to genetically manage the disease. Near isogenic lines of Early Calwonder (Capsicum annuum) pepper plants carrying $Bs_1$, $Bs_2$ and $Bs_3$, and PI235047 (C. pubescens) were used as differential hosts. Race P1 was found to be predominant, followed by race P7, and races P3 and P8 were also observed. This is the first report of races P7 and P8 in Korea. The races P7 and P8 were differentiated from the former races P1 and P3, respectively, on the basis of their ability to elicit hypersensitive reactions to PI235047.

ABA Increases Susceptibility of Pepper Fruits to Infection of Anthracnose by Collectotrichum acutatum

  • Hwang, Soo-Kyeong;Kim, Joo-Hyung;Kim, Young-Ho;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • 제24권4호
    • /
    • pp.400-406
    • /
    • 2008
  • To examine the relationship between plant hormones and the development of pepper anthracnose, we investigated the effects of several plant hormones on the progression of disease symptoms. Of the five plant hormones examined, abscisic acid (ABA) increased the lesion length and disease incidence on detached fruits of Capsicum annuum cv. Nokkwang. The simultaneous application of ABA with inoculation of Colletotrichum acutatum JC24 resulted in increased lesion length, depending the concentration of ABA applied. Additionally, application of ABA caused the development of pepper anthracnose in fruits of Capsicum baccatum cvs. PBC80 and PBC81, which were previously resistant to the disease. Furthermore, ABA administration rendered increased pathogenicity of other isolates of C. acutatum BAC02063, PECH10, and TCBNU3 obtained from the Chinese matrimony vine, peach, and tea tree, respectively. Our data suggest that exogenous ABA may result in the suppression of defense mechanisms of pepper fruits against anthracnose, which leads to a change in the susceptibility of pepper fruits and the development of pepper anthracnose.