DOI QR코드

DOI QR Code

ABA Increases Susceptibility of Pepper Fruits to Infection of Anthracnose by Collectotrichum acutatum

  • Hwang, Soo-Kyeong (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Joo-Hyung (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Young-Ho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Heung-Tae (Department of Plant Medicine, Chungbuk National University)
  • Published : 2008.12.01

Abstract

To examine the relationship between plant hormones and the development of pepper anthracnose, we investigated the effects of several plant hormones on the progression of disease symptoms. Of the five plant hormones examined, abscisic acid (ABA) increased the lesion length and disease incidence on detached fruits of Capsicum annuum cv. Nokkwang. The simultaneous application of ABA with inoculation of Colletotrichum acutatum JC24 resulted in increased lesion length, depending the concentration of ABA applied. Additionally, application of ABA caused the development of pepper anthracnose in fruits of Capsicum baccatum cvs. PBC80 and PBC81, which were previously resistant to the disease. Furthermore, ABA administration rendered increased pathogenicity of other isolates of C. acutatum BAC02063, PECH10, and TCBNU3 obtained from the Chinese matrimony vine, peach, and tea tree, respectively. Our data suggest that exogenous ABA may result in the suppression of defense mechanisms of pepper fruits against anthracnose, which leads to a change in the susceptibility of pepper fruits and the development of pepper anthracnose.

Keywords

References

  1. Bouarab, K., Melton, R., Peart, D., Baulcombe, D. and Osbourn, A. 2002. A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:889-892 https://doi.org/10.1038/nature00950
  2. Brisson, L. F., Tenhaken, R. and Lamb C. J. 1994. Function of oxidative cross-linking of cell wall structure proteins in plant disease resistance. Plant Cell 6:1703-1712 https://doi.org/10.1105/tpc.6.12.1703
  3. Bowles, D. J. 1990. Defense-related proteins in higher plants. Annu. Rev. Biochem. 59:873-907 https://doi.org/10.1146/annurev.bi.59.070190.004301
  4. Busk, P. K. and Pages, M. 1998. Regulation of abscisic acid induced transcription. Plant Mol. Biol. 37:425-435 https://doi.org/10.1023/A:1006058700720
  5. Delledonne, M., Xia, Y., Dixon, R. A. and Lamb, C. 1998. Nitric oxide functions as signal in plant disease resistance. Nature 394:585-588 https://doi.org/10.1038/29087
  6. Elad, Y. 1988. Involvement of ethylene in the diseases caused by Botrytis cinerea in rose and carnation flowers and the possibility of control. Ann. Appl. Bot. 113:589-598 https://doi.org/10.1111/j.1744-7348.1988.tb03336.x
  7. Elad, Y. 1997. Responses of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection. Biol. Rev. 72:381-422 https://doi.org/10.1017/S0006323197005057
  8. Escobar, M. A., Civerolo, E. L., Summerfelt, K. R. and Dandekar, A. M. 2001. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc. Natl. Acad. Sci. USA 98:13437-13442 https://doi.org/10.1073/pnas.241276898
  9. Jensen, A. B., Busk, P. K., Figueras, M., Alba, M. M., Perachia, G., Messeguer, R., Goday, A. and Pages, M. 1996. Drought signal transduction in plants. Plant Growth Regul. 20:105-110 https://doi.org/10.1007/BF00024006
  10. Kim J., Park, S. Choi, W., Lee, Y. and Kim, H. T. 2008. Characterization of Colletotrichum isolates causing anthracnose or pepper in Korea. Plant Pathol. J. 24:17-23 https://doi.org/10.5423/PPJ.2008.24.1.017
  11. Kim, K.-H., Yoon, J.-B., Park, H.-G., Park, E. U. and Kim, Y. H. 2004. Structural modifications and programmed cell death of chili pepper fruit related to resistant responses to Colletotrichum gloeosporioides infection. Phytopathology 94:1295-1304 https://doi.org/10.1094/PHYTO.2004.94.12.1295
  12. Lahey, K. A., Yuan, R., Burns, J. K., Ueng, P. P., Timmer, L. W. and Kuang-Ren, C. 2004. Induction of phytohormones and differential gene expression in citrus flowers infected by the fungus Colletotrichum acutatum. Mol. Plant-Microbe Interact. 17:1394-1401 https://doi.org/10.1094/MPMI.2004.17.12.1394
  13. Lamb, C. and Dixon, R. A. 1997. The oxidative burst in plant disease resitance. Annu. Rev. Plant Physiol. Plant Mol. 48:251-275 https://doi.org/10.1146/annurev.arplant.48.1.251
  14. Leon, R., Santamaría, J. S., Alpizar, L., Escamilla, J. A. and Oropeza, C. 1996. Physiological and biochemical changes in shoot of coconut palms affected by lethal yellowing. New Phytol. 134:227-234 https://doi.org/10.1111/j.1469-8137.1996.tb04627.x
  15. Leung, J. and Giraudat, J. 1998. Ascisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:199-222 https://doi.org/10.1146/annurev.arplant.49.1.199
  16. Ludwing, A. and Tenhaken, R. 2000. Defense gene expression in soybean is linked to the status of the cell death program. Plant Mol. Biol. 44:209-218 https://doi.org/10.1023/A:1006439504748
  17. Malonek, S., Bömke, C., Bornberg-Bauer, E., Rojas, M. C., Hedden, P., Hopkins, P. and Tudzynski, B. 2005. Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochemistry 66:1296-1311 https://doi.org/10.1016/j.phytochem.2005.04.012
  18. Maor, R., Haskin, S., Levi-Kedmi, H. and Sharon, A. 2004. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl. Environ. Microbiol. 70:1852-1854 https://doi.org/10.1128/AEM.70.3.1852-1854.2004
  19. Martin-Hernandez, A. M., Dufresne, M., Hugouvieux, V., Melton, R. and Osbourn, A. 2000. Effects of targeted replacement of the tomatinase gene on the interaction of Septoria lycopersici with tomato plants. Mol. Plant-Microbe Interact. 13:1301-1311 https://doi.org/10.1094/MPMI.2000.13.12.1301
  20. McCarty, D. R. 1995. Genetic control and integration of maturation and germination pathways in seed development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:71-93 https://doi.org/10.1146/annurev.pp.46.060195.000443
  21. Park, K. S. and Kim, C. H. 1992. Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Korean J. Plant Pathol. 8:61-69
  22. Plavsic-Banjac, B., Hunt, P. and Maramorosch, K. 1972. Mycoplasma- like bodies associated lethal yellowing disease of coconut palms. Phytopathology 62:298-299 https://doi.org/10.1094/Phyto-62-298
  23. Robinson, M., Riov, J. and Sharon A. 1998. Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl. Environ. Microbiol. 64:5030-5032
  24. Shiraishi, T., Yamada, T., Saitoh, K., Kato, T., Toyoda, K., Yoshioka, H., Kim, H.-M., Ichinose, Y., Tahara, M. and Oku, H. 1994. Suppressors determinants of specificity produced by plant pathogens. Plant Cell Physiol. 35:1107-1119 https://doi.org/10.1093/oxfordjournals.pcp.a078703
  25. Tudzynski, B. 2005. Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl. Microbiol. Biotechnol. 66:597-611 https://doi.org/10.1007/s00253-004-1805-1
  26. Yamada, T., Hasnimoto, H., Shirashi, T. and Oku, H. 1989. Supression of pisatin, phenylalanine ammonia-lyase mRNA, and ahalcone synthase mRNA accumulation by a putative pathogenicity factor from the fungus Mycosphaerella pinodes. Mol. Plant Microbe Interact. 2:256-261 https://doi.org/10.1094/MPMI-2-256
  27. Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., Maruyama-Nakashita, A., Kudo, T., Shinozaki, K., Yoshida, S. and Nakashita, H. 2008. Antagonistic interaction between systemic acquired resistance and the abscisic acidmediated abiotic stress response in Arabidopsis. Plant Cell 20:1678-1692 https://doi.org/10.1105/tpc.107.054296

Cited by

  1. The Pepper Calmodulin GeneCaCaM1Is Involved in Reactive Oxygen Species and Nitric Oxide Generation Required for Cell Death and the Defense Response vol.22, pp.11, 2009, https://doi.org/10.1094/MPMI-22-11-1389
  2. The Hypersensitive Induced Reaction and Leucine-Rich Repeat Proteins Regulate Plant Cell Death Associated with Disease and Plant Immunity vol.24, pp.1, 2011, https://doi.org/10.1094/MPMI-02-10-0030
  3. Addition of abscisic acid increases the production of chitin deacetylase by Colletotrichum gloeosporioides in submerged culture vol.51, pp.8, 2016, https://doi.org/10.1016/j.procbio.2016.05.003
  4. Global-scale computational analysis of genomic sequences reveals the recombination pattern and coevolution dynamics of cereal-infecting geminiviruses vol.5, pp.1, 2015, https://doi.org/10.1038/srep08153