• Title/Summary/Keyword: Capsicum annuum L

Search Result 432, Processing Time 0.023 seconds

Cultivation Demonstration of Paprika (Capsicum annuum L.) Cultivars Using the Large Single-span Plastic Greenhouse to Overcome High Temperature in South Korea (고온기 대형 단동하우스를 이용한 파프리카 품종별 재배실증)

  • Yeo, Kyung-Hwan;Park, Seok Ho;Yu, In Ho;Lee, Hee Ju;Wi, Seung Hwan;Cho, Myeong Cheoul;Lee, Woo Moon;Huh, Yun Chan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.429-440
    • /
    • 2021
  • During the growing period, the integrated solar radiation inside the greenhouse was 12.7MJ·m-2d-1, and which was 90% of the average daily global radiation outside the greenhouse, 14.1MJ·m-2d-1. The 24-hour average temperature inside the greenhouse from July to August, which has the highest temperature of the year, was 3.04℃ lower than the outside temperature, and 4.07℃ lower after the rainy season. Before the operation of fog cooling system, the average daily RH (%) was lowered to a minimum of 40% (20% for daytime), making it inappropriate for paprika cultivation, but after the operation of fog system, the daily RH during the daytime increased to 70 to 85%. The average humidity deficit increased to a maximum of 12.7g/m3 before fog supply, but decreased to 3.7g/m3 between July and August after fog supply, and increased again after October. The daytime residual CO2 concentration inside the greenhouse was 707 ppm on average during the whole growing period. The marketable yield of paprika harvested from July 27th to November 23rd, 2020 was higher in 'DSP-7054' and 'Allrounder' with 14,255kg/10a and 14,161kg/10a, respectively, followed by 'K-Gloria orange', 'Volante' and 'Nagono'. There were significant differences between paprika cultivars in fruit length, fruit diameter, soluble solids (°Brix), and flash thickness (mm) of paprika produced in summer season at large single-span plastic greenhouse. The soluble solids content was higher in the orange cultivars 'DSP-7054' and 'Naarangi' and the flesh thickness was higher in the yellow and orange cultivars, with 'K-Gloria orange' and 'Allrounder' being the thickest. The marketable yield of paprika, which was treated with cooling and heating treatments in the root zone, increased by 16.1% in the entire cultivars compared to the untreated ones, increased by 16.5% in 'Nagano', 10.3% in the 'Allrounder', 20.2% in the 'Naarangi', and 17.3% in 'Raon red'.

Effect of VA Mycorrhizal Fungi on Alleviation of Salt Injury in Hot Pepper (Capsicum annuum L.) (VA 균근균(菌根菌) 접종(接種)에 의한 고추의 염류장해(鹽類障害) 경감효과(輕減效果))

  • Sohn, Bo-Kyoon;Huh, Sang-Man;Kim, Kil-Yong;Kim, Yong-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.482-492
    • /
    • 2000
  • Vesicular arbuscular mycorrhizal (VAM) fungi are known to increase plant growth as well as to enhance salt tolerance of plants where plant roots are colonized by VAM. In pot experiment, pepper was grown in soil containing 0, 200, 400, and $600P\;kg\;ha^{-1}$ with and without mycorrhizal inoculum. Pots were irrigated with saline water containing 0.5, 2.0, and $6.0dS\;m^{-1}$. At 0, 200, and $400P\;kg\;ha^{-1}$ of three EC treatments, plant hight in mycorrhizal treatments was significantly different compared to nonmycorrhizal treatments. However, plant hight at $600P\;kg\;ha^{-1}$ was not different between mycorrhizal and nomycorrhizal treatments. Leaf area at $0P\;kg\;ha^{-1}$ of three EC treatments, and $200P\;kg\;ha^{-1}$ of $6.0dS\;m^{-1}$ in mycorrhizal treatments significantly increased compared to nonmycorrhizal treatments. However, these increase were not discovered in high salinity and P level. Level of EC affected dry weight, and especially, interection of P and EC, or P and VA inoculation highly affected root dry weight. R/S ratio generally decreased in mycorrhizal treatments. Significantly decreased R/S ratio was shown at 0, 400, and $600P\;kg\;ha^{-1}$ of $6.0dS\;m^{-1}$. Chlorophyll content generally increased with decreased salinity and P level where mycorrhizal treatments showed higher chlorophyll content compared to nonmycorrhizal treatments. The benefits of VAM inoculation on fruit production was discovered at only low P level and salinity. Mycorrhizal dependency on dry weight basis was generally shown in $0P\;kg\;ha^{-1}$ of three EC treatments and 0.5, $2.0dS\;m^{-1}$ of $200P\;kg\;ha^{-1}$ level. Colonization rate ranged 3.3 to 43.3% and number of spores was 47.7 to 198.3 $100g^{-1}$ soil. Colonization rate and number of spores increased with decreased P level and salinity where there was high correlation ($r=0.858^{**}$) between both. Also improved uptake of mineral nutrients was discovered at mycorrhizal treatments in decreased P level and salinity.

  • PDF