• 제목/요약/키워드: Capsaicin synthase

검색결과 5건 처리시간 0.02초

Characterization of Putative Capsaicin Synthase Promoter Activity

  • Kim, June-Sik;Park, Minkyu;Lee, Dong Ju;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.331-339
    • /
    • 2009
  • Capsaicin is a very important secondary metabolite that is unique to Capsicum. Capsaicin biosynthesis is regulated developmentally and environmentally in the placenta of hot pepper. To investigate regulation of capsaicin biosynthesis, the promoter (1,537 bp) of pepper capsaicin synthase (CS) was fused to GUS and introduced into Arabidopsis thaliana (Col-0) via Agrobacterium tumefaciens to produce CSPRO::GUS transgenic plants. The CS was specifically expressed in the placenta tissue of immature green fruit. However, the transgenic Arabidopsis showed ectopic GUS expressions in the leaves, flowers and roots, but not in the stems. The CSPRO activity was relatively high under light conditions and was induced by both heat shock and wounding, as CS transcripts were increased by wounding. Exogenous capsaicin caused strong suppression of the CSPRO activity in transgenic Arabidopsis, as demonstrated by suppression of CS expression in the placenta after capsaicin treatment. Furthermore, the differential expression levels of Kas, Pal and pAmt, which are associated with the capsaicinoid biosynthetic pathway, were also suppressed in the placenta by capsaicin treatment. These results support that capsaicin, a feedback inhibitor, plays a pivotal role in regulating gene expression which is involved in the biosynthesis of capsaicinoids.

EFFECT OF CAPSAICIN ON LPS-INDUCED PROSTAGLANDIN E2 PRODUCTION BY MURINE PERITONEAL MACROPHAGES

  • Kim, Chu-Sook;Kim, Byung-Sam;Han, In-Seob;Chei, Suck-Young;Kwon, Byung-Se;Rina Yu
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.132-132
    • /
    • 2001
  • Proinflamamtory mediators such as prostaglandins (PGs), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) are known to be key mediators in pathogenesis of inflammatory diseases. Capsaicin, the major ingredient of hot pepper, is considered to elicit anti-inflammatory property. In this study, the effect of capsaicin on the prostaglandin E$_2$(PGE$_2$) production was investigated in murine peritoneal macrophages.(omitted)

  • PDF

Alterations in Meningeal Blood Flow by Stimulation of Trigeminovascular System in Rats

  • Kim, Byung-Soo;Choi, Chang-Hwa;Lee, Won-Suk
    • 대한의생명과학회지
    • /
    • 제11권3호
    • /
    • pp.365-373
    • /
    • 2005
  • The aim of this study was to investigate the alterations in meningeal blood flow by stimulation of trigeminovascular system. An open cranial window was prepared on the right parietal bone of male Sprague-Dawley rats. Trigeminovascular system was stimulated by electrical stimulation of trigeminal ganglion (ETS), somatosensory (whisker) stimulation, or topical applications of capsaicin and neuropeptides including substance P and calcitonin gene-related peptide (CGRP). Neonatal capsaicin pretreatment was performed with subcutaneous administration of capsaicin (50 mg/kg) within the first 24 hours after birth. Changes in regional blood flow of dural artery (rDBF) and pial artery (rPBF) were continuously measured through the cranial window by laser-Doppler flowmetry. Both ETS and capsaicin caused a chain of alterations in rPBF and rDBF responses, i.e., an immediate transient decrease followed by rapid and marked increase in rPBF, which were significantly attenuated not only by pretreatments with L-733,060, a $NK_1$ receptor blocker, $CGRP_{8-37}$, a $CGRP_1$ receptor blocker, and 7-nitroindazole monosodium salt (7-NINA), a neuronal nitric oxide synthase inhibitor but also by neonatal capsaicin treatment. Exogenous neuropeptides including substance P and CGRP increased the meningeal blood flow, which was significantly attenuated not only by pretreatment with L-733,060 and $CGRP_{8-37}$, respectively, but also by pretreatment with 7-NINA. The rPBF response to whisker stimulation was significantly attenuated not only by trigeminovascular system injuries including nasociliary nerve denervation and neonatal capsaicin treatment but also by pretreatments with L-733,060, $CGRP_{8-37}$ and 7-NINA. These results suggest that the stimulation of trigeminovascular system causes prominent alterations in meningeal blood flow, and that neuropeptides as well as nitric oxide in the trigeminovascular system are importantly implicated in the regulation of meningeal blood flow.

  • PDF

Alterations in Cerebrovascular Reactivity by Trigeminovascular System Injury in Rats

  • Park Sang June;Choi Chang Hwa;Lee Won Suk
    • 대한의생명과학회지
    • /
    • 제11권2호
    • /
    • pp.211-219
    • /
    • 2005
  • Trigeminovascular system plays an important role for the cerebral memodynamics. The aim of this study was to investigate the alterations in cerebrovascular reactivity by trigeminovascular system injury in rats. Trigeminovascular system of male Sprague-Dawley rats was injured by either denervation of nasocilliary nerve or neonatal capsaicin treatment. Trigeminovascular system was stimulated by controlled hemorrhagic hypotension or somatosensory (whisker) stimulation. Changes in regional cerebral blood flow (rCBF) and pial arterial diameter were continuously measured by laser-Doppler flowmetry and videomicroscopy, respectively. Nitric oxide synthase (NOS) activity in cerebral cortex was determined by measuring the conversion of $L-^3H-arginine\;to\;L-^3H-citrulline$. Cyclic GMP levels in cerebral cortex and pial artery were determined using the cyclic GMP $^{125}I$ scintillation proximity assay system. rCBF autoregulation was impaired or almost abolished by trigeminovascular system injury. rCBF response to whisker stimulation was significantly attenuated by trigeminovascular system injury. NOS activity as well as cyclic GMP level in cerebral cortex and pial artery were significantly reduced in the group of trigeminovascular system injury. These results suggest that trigeminovascular system injury causes prominent alterations in cerebrovascular reactivity, and that NO, which is generated by neuronal NOS in the trigeminovascular system, is implicated in the regulation of rCBF.

  • PDF

SUPPRESSION OF PHORBOL ESTER-INDUCED EXPRESSION OF CYCLLOOXYGENASE-2 AND INDUCIBLE NITRIC OXIDE SYNTHASE BY SELCTED CHEMOPREVENTIVE PHYTOCHEMICALS VIA DOWN-REGULATION OF NF-$\textsc{k}$B

  • Surh, Young-Joon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 국제심포지움
    • /
    • pp.88.2-98
    • /
    • 2002
  • A wide arry of naturally occurring substances particularly those present in dietary and medicinal plants, have been reported to possess substantial cancer chemopreventive properties. Certain phytochemicals retain strong antioxidative and anti-inflammatory properties which appear to contribute to their chemopreventive or chemoprotective activities. Inducible cyclooxygenase(COX-2) and nitric oxide synthase (iNOS) are important enzymes that mediate inflammatory processes. There is some evidence that expression of both COX-2 and iNOS is co-regulated by the eukaryotic transcription factor NF-$textsc{k}$B. Increased expression of COX-2 and/or iNOS has been associated with pathophysiology of certain types of human cancers as well as inflammatory diseases. Since inflammation is closely linked to tumor promotion, substances with potent anti-inflammatory activies are anticipated to exert chemopreventive effects on carcinogenesis, particularly in the promotion stage. An example is curcumin, a yellow pigment of turmeric (Curcuma longa L., Zingiberaceae), that strongly occurring diaryl heptanoids structurally related to curcumin have substantial anti-tumor promotional activities in two-stage mouse skin carcinogenesis. Thus, yakuchinone A [1-(4'-hydroxy-3'-methoxyphenyl)-7-phenyl-3heptanone] and yakuchinone B [1-(4'-hydroxy-3'methoxyphenyl)-7-phenylhept-1-en-3-one] present in Alpinia oxyphylla Miquel (Zingiberacease) attenuate phorbol ester-induced inflammation and papilloma formation in female ICR mice. These diarylheptanoids also suppressed phorbol ester-induced activation of epdermal ornithine decarboxylase and its mRNA expression when applied onto shaven backs of mice. Yakuchinone A and B as well as curcumin inhibited phorbol ester-induced expression of COX-2 and iNOS and their mRNA in mouse skin via inactivation of NF-$textsc{k}$B. Capsaicin, a major pungent ingredient of red pepper also attenuated phorbol ester-induced NF-$textsc{k}$B activation. Similar suppression of COX-2 and iNOS and down-regulation of NF-$textsc{k}$B activation for its DNA binding were observed with the ginsenosied Rg3 and the ethanol extract of Artemisia asiatica. We have also found that certain anti-inflammatory phytochemicals exert inhibitory effects on phorbol ester-induced COX-2 expression and NF-$textsc{k}$B activation in immortalized human breast epithelial (MCF-10A) cells in culture. One of the plausible mechanisms undelying inhibition by aforementioned phytochemicals of phorbol ester-induced NF-$textsc{k}$B activation involves interference with degragation of the inhibitory unit, I$textsc{k}$Ba, which blocks subsequent nuclear translocation of the functionally active p65 subunit of NF-$textsc{k}$B. the activation of epidermal NF-$textsc{k}$B by phorbol ester and subsequent induction of COX-2 hence appear to play an important role in intracellular signaling pathwasy leading to tumor promotion and targeted inhibition of NF-$textsc{k}$B may provide a new promising cancer chemopreventive strategy.

  • PDF