• Title/Summary/Keyword: Capping Technology

Search Result 114, Processing Time 0.022 seconds

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.

An Experimental Study on the Behavior of Capping Material by Sea Waves (파랑에 의한 피복재의 거동에 관한 실험적 연구)

  • Kong, Jinyoung;Kim, Youngtak;Kang, Jaemo;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.51-58
    • /
    • 2014
  • In-situ capping is a method to stabilize contaminated sediments by isolation. Few researches on the in-situ capping have been performed, although the engineering approach is still required to prevent the release of contaminants. In this study, hydraulic model test were conducted by using a wave generator to observe the change of cap thickness which is important factor in design of capping. Sands with particle size between 0.075 to 2 mm as capping materials were used to observe the change of capping thickness by waves. The experimental results show that the surface of capping materials is similar to wave form. The more wave height increases, the more erosion of capping materials increases.

Effects of Capping with Recycled Aggregates and Natural Zeolite on Inhibition of Contaminants Release from Marine Sediment (순환골재와 천연제올라이트 피복에 의한 연안퇴적물 오염물질 용출 차단 효과)

  • Kim, Young-Kee;Shin, Woo-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.546-551
    • /
    • 2016
  • In this study, capping with recycled aggregate and natural zeolite in marine sediment was performed to investigate its inhibitory effect on pollutants released from sediment to seawater. An experiment was performed by capping with amendments for 60 days, and concentrations of organic matter (COD), nitrate, phosphate and metallic elements (Ni, Zn, Cu, Pb, Cd, As, and Cr) were measured. Two capping materials effectively suppressed pollutant release. Recycled aggregate showed better effectiveness for organic pollutant, nitrate and phosphate release. Meanwhile, natural zeolite was effective for metallic elements. As a result, recycled aggregate and natural zeolite can be considered as cost-effective/inexpensive capping material candidates. Also, the capping material can be selected according to the target pollutant.

Effects of Ti and TiN Capping Layers on Cobalt-silicided MOS Device Characteristics in Embedded DRAM and Logic

  • Kim, Jong-Chae;Kim, Yeong-Cheol;Choy, Jun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.782-786
    • /
    • 2001
  • Cobalt silicide has been employed to Embedded DRAM (Dynamic Random Access Memory) and Logic (EDL) as contact material to improve its speed. We have investigated the influences of Ti and TiN capping layers on cobalt-silicided Complementary Metal-Oxide-Semiconductor (CMOS) device characteristics. TiN capping layer is shown to be superior to Ti capping layer with respect to high thermal stability and the current driving capability of pMOSFETs. Secondary Ion Mass Spectrometry (SIMS) showed that the Ti capping layer could not prevent the out-diffusion of boron dopants. The resulting operating current of MOS devices with Ti capping layer was degraded by more than 10%, compared with those with TiN.

  • PDF

A Study on the Efficiency Effects of Capping Layer on the Top Emission Organic Light Emitting Diode (전면 유기발광 다이오드 기능층 캐핑레이어 적용에 따른 효율상승에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Jeon, Yongmin;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Top emission organic light-emitting diode (TEOLED) is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device (BEOLED). Unlike BEOLED, TEOLED contain semitransparent metal cathode and capping layer. Because there are many characteristics to consider just simple thickness change, optimizing organic thickness of TEOLED for microcavity is difficult. So, in this study, we optimized Device capping layer at unoptimized micro-cavity structure TEOLED device. And we compare only capping layer with unoptimized microcavity structure can overcome optimized micro-cavity structure device. We used previous our optimized micro-cavity structure to compare each other. As a result, it has been found that the efficiency can be obtained almost the same or higher only capping layer, which is stacked on top of the device and controls only the thickness and refractive index, without complicated structural calculations. This means that higher efficiencies can be obtained more easily in laboratories with limited organic materials or when optimizing new structures etc.

Technology of Ni Silicide for sub-100nm CMOS Device (100nm 이하의 CMOS소자를 위한 Ni Silicide Technology)

  • 이헌진;지희환;배미숙;안순의;박성형;이기민;이주형;왕진석;이희덕
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.237-240
    • /
    • 2002
  • In this W, a NiSi technology suitable for sub-100nm CMOS sevice is proposed. It seems that capping layer has little effect on the sheet resistance and junction leakage current when there is no thermal treatment. However, there happened agglomeration and drastic increase of Junction leakage current without capping layer. In other word, capping layer especially TiN capping layer is highly effective in suppressing thermal effect. It is shown that the sheet resistance of 0.12${\mu}{\textrm}{m}$ linewidth and shallow p+/n junction with NiSi were stable up to 700 t /30 minute thermal treatment.

  • PDF

Capping Treatment for the Reduction of Phosphorus Release from Contaminated Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 Capping 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.438-446
    • /
    • 2006
  • A lab-scale batch test was conducted to develop capping materials to reduce the sediment phosphorus in the stagnant water zone of Gyeongancheon in Paldang Lake. The mean grain size(Mz) of sediment in the investigated area was 7.7 ${\phi}$, which is very fine, and the contents of organic carbon($C_{org}$) was 2.4%, which is very high. For the phosphorous release experiment to select the optimal capping material, sand layer, powder-gypsum($CaSO_4{\cdot}2H_2O$), granule-gypsum, complex layer(gypsum+sand) and the control were compared and evaluated in the 150 L reactor for 45 days. In case of the capping with the sand, it was found that the phosphorous from the sediment could be reduced by around 50%. However, it was found that this caused the reduction of the dissolved oxygen in the water column(by less than 3 mg/L) due to the resuspension of sediment and the organic matter decomposition that comes from the generation of $CH_4$ gas in the 1 cm of the sand layer. Therefore, it is likely that the sand layer has to be thickener in case of the sand capping. Powder-gypsum and granule-Gypsum reduced phosphorous release by more than 80%. However, the concentration of ${SO_4}^{2-}$ in the water column increased, making it difficult to apply it to the drinking water protection zone. We developed Fe-Gypsum and $SiO_2$-gypsum materials to reduce the solubility of ${SO_4}^{2-}$. Powder-Gypsum creates the interception film that does not have any aperture on the sediment layer when it is combined with the water. However phosphorous release caused by the generation of $CH_4$ gas may happen at a time when the gypsum layer has the crack. Capping through the complex layer(granule-Gypsum+sand(1 cm)) found to be suitable for the drinking water protection zone because it was effective to prevent phosphorus release. Moreover, this leads to the lower solubility from the concentration of ${SO_4}^{2-}$ into the water column than the powder-Gypsum and granule-Gypsum. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment can reduce the progress of methanogensis because fast early diagenesis and sufficient supply of ${SO_4}^{2-}$ to the sediment, stimulate the SRB(sulfate reducing bacteria) highly.

Evaluating the Capping Effects of Dredged Materials on the Contaminated Sediment for Remediation and Restoration of the West Sea-Byeong Dumping Site (서해병 폐기물 배출해역 오염퇴적물의 정화·복원을 위한 준설토 피복 효과 평가)

  • Kang, Dong Won;Lee, Kwang Sup;Kim, Young Ryun;Choi, Ki-young;Kim, Chang-joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.212-223
    • /
    • 2022
  • For the remediation and restoration of contaminated sediment at the West Sea-Byeong dumping site, dredged materials was dumped in 2013, 2014, 2016, and 2017. The physicochemical properties and benthic fauna in surface sediments of the capping area (5 stations) and natural recovery area (2 stations) were analyzed annually from 2014 to 2020 to evaluate the capping effect of the dredged materials. The natural recovery area had a finer sediment with a mean particle size of 5.91-7.64 Φ, while the sediment in the capping area consisted of coarse-grained particles with a mean particle size of 1.47-3.01 Φ owing to the capping effect of dredged materials. Considering that the contents of organic matters (COD, TOC, and TN) and heavy metals in the capping area are approximately 50 % lower (p<0.05) than that in the natural recovery area, it is judged that there is a capping effect of dredged materials. As a result of analyzing macrobenthic assemblages, the number of species and ecological indices of the capping area were significantly lower than that of the natural recovery area (p<0.05). The number of species and ecological indices at the capping area were increased for the first four years after the capping in 2013 and 2014 and then tended to decrease thereafter. It is presumed that opportunistic species, which have rapid growth and short lifetime, appeared dominantly during the initial phase of capping, and the additory capping in 2016 and 2017 caused re-disturbance in the habitat environment. In the natural recovery and capping areas, Azti's Marine Biotic Index (AMBI) was evaluated as a fine healthy status because it maintained the level of 2nd grades (Good), whereas Benthic Pollution Index (BPI) remained at the 1st and 2nd grade. Therefore, capping of dredged materials for remediation of contaminated sediment in the dumping site has the effect of reducing the pollution level. However, in terms of the benthic ecosystem, it is recommended that the recovery trend should be monitored long-term. Additionally, it is necessary to introduce an adaptive management strategy when expanding the project to remediate the contaminated sediment at the dumping area in the future.

Application of Limestone, Zeolite, and Crushed Concrete as Capping Material for Interrupting Heavy Metal Release from Marine Sediments and Reducing Sediment Oxygen Demand (해양퇴적물에서 중금속 용출 차단 및 퇴적물 산소 요구량 감소를 위한 석회석, 제올라이트 및 폐콘크리트의 피복 소재로서 적용)

  • Kang, Ku;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.31-38
    • /
    • 2015
  • This study aims to assess the effectiveness of limestone, zeolite, and crushed concrete as capping material to block the release of heavy metals (As, Cu, Cr, Ni, and Pb) and reduce the sediment oxygen demand. The efficiency of limestone, zeolite, and crushed concrete was evaluated in a reactor in which a 1-cm thick layer of capping materials was placed on the sediments collected from Inchon north harbor. Dissolved oxygen concentration and heavy metal concentration in seawater above the uncapped sediments and capping material were monitored for 17 days. The sediment oxygen demand was in the following increasing order: crushed concrete ($288.37mg/m^2{\cdot}d$) < zeolite ($428.96mg/m^2{\cdot}d$) < limestone ($904.53mg/m^2{\cdot}d$) < uncapped ($981.34mg/m^2{\cdot}d$). The capping materials could reduce the sediment oxygen demand by blocking the release of biochemical matters consuming dissolved oxygen in seawater. It was also shown that zeolite and crushed concrete could effectively block the release of Cu, Ni, and Pb but those were not effective for the interruption of As and Cr release from marine contaminated sediments.

Experimental Investigation on In-Situ Capping Erosion by Waves (피복공법 적용 시 파랑에 의한 피복재 침식 실험 연구)

  • Kong, Jin-Young;Kim, Young-Taek;Ryu, Byung-Hyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.33-43
    • /
    • 2016
  • The determination of in-situ capping materials is one of the most important factors to design in-situ capping in order to protect capping materials from erosion. Previous studies have established relationship between the velocity induced by wave energy and effective diameter of sediments, but they are mostly empirical and numerical researches which is too complicated for field engineers to analyze the erosion of in-situ capping materials. This study provides simple analytical solutions and reliability based on hydraulic model test results. Experimental results show that measured flow velocities with respect to depth induced by wave energy are almost the same as estimated velocities and the erosion resistances of the different effective particle diameters can be estimated.