• 제목/요약/키워드: Capillary tube simulation

검색결과 28건 처리시간 0.252초

비단열 모세관의 영향을 고려한 냉동 사이클 시뮬레이션 (Simulation of the effects of a non-adiabatic capillary tube on refrigeration cycle)

  • 박상구;손기동;정지환;김윤수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.255-262
    • /
    • 2008
  • The simulation of refrigeration cycle is important since the experimental approach is too costly and time-consuming. The present simulation focuses on the effect of capillary tube-suction line heat exchangers (CT-SLHX), which are widely used in small vapor compression refrigeration systems. The simulation of steady states is based on fundamental conservation equations of mass and energy. These equations are solved simultaneously through iterative process. The non-adiabatic capillary tube model is based on homogeneous two-phase model. This model is used to understand the refrigerant flow behavior inside the non-adiabatic capillary tubes. The simulation results show that both of the location and length of heat exchange section influence the coefficient of performance (COP). These results can be used in either design calculation of capillary tube length for refrigeration cycle or effect of suction line heat exchanging on refrigeration cycle.

  • PDF

분배기와 모세관을 고려한 히트펌프용 증발기 성능 모사 (Numerical Simulation of a Heat Pump Evaporator Considering the Pressure Drop in the Distributor and Capillary Tubes)

  • 박영기;예휘열;이관수
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.476-486
    • /
    • 2012
  • A simulation program was developed to evaluate the heat transfer performance of a multi-pass fin-tube evaporator, considering the pressure drop in the distributor and capillary tubes. The effect of capillary tube length for each pass was analyzed with various inlet air flow types and distributions. The appropriate capillary tube length distribution and correlation were determined for various inlet air flow types and distributions. The correlated results agreed well with the simulation, with an average error of less than 7%. By applying an optimal capillary tube length distribution, the heat transfer rate was increased by 4~5% compared to cases with uniform tubelength distributions, for each of the inlet air flow types and distributions considered in this study.

대체냉매의 모세관내 유동 시뮬레이션 (Numerical Simulation Model of Alternative Refrigerants Flow Through Capillary Tubes)

  • 장세동;노승택
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.55-64
    • /
    • 1996
  • A numerical model of refrigerant flow through a capillary tube is developed, which considers the effects of underpressure for vaporization, kinetic energy, and roughness of capillary tube. The numerical model is based on homogeneous flow assumptions for the two-phase flow region. A characteristic chart of HFC refrigerants flow through capillary tubes and correction factor chart of geometry and relative roughness of capillary tube to select a proper capillary for refrigerating machines using alternative refrigerants is presented by this numerical model.

  • PDF

비단열 모세관의 영향을 고려한 냉동 사이클 시뮬레이션 (Simulation of the Refrigeration Cycle Equipped with a Non-Adiabatic Capillary Tube)

  • 박상구;손기동;정지환;김윤수
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.131-139
    • /
    • 2009
  • The simulation of refrigeration cycle is important since the experimental approach is costly and time-consuming. The present paper focuses on the simulation of a refrigeration cycle equipped with a capillary tube-suction line heat exchanger(SLHX), which is widely used in small vapor compression refrigeration systems. The present simulation is based on fundamental conservation equations of mass, momentum, and energy. These equations are solved through an iterative process. The non-adiabatic capillary tube model is based on homogeneous two-phase flow model. This model is used to understand the refrigerant flow behavior inside the non-adiabatic capillary tube. The simulation results show that both of the location and length of heat exchange section influence the coefficient of performance (COP).

관순법을 이용한 공조기 사이클 시뮬레이션 (Air-conditioner cycle simulation using tube-by-tube method)

  • 윤백;박현연;유국철;김용찬
    • 설비공학논문집
    • /
    • 제11권4호
    • /
    • pp.499-510
    • /
    • 1999
  • A computer program was developed for simulating performance(capacity, power consumption and etc.) of air-conditioners using compressor, fin-tube heat exchanger and capillary tube. The program consists of five modules, condenser, evaporator, compressor, capillary tube simulation modules and properties modules of refrigerant and moist air, The present program is focused on R22 only, however can be easily extended for other refrigerants such as R407C and R410A just by adding property modules. The compressor simulation module utilizes performance maps supplied by manufacturers-map-based model. The condenser and evaporator simulation modules are modeled using tube-by-tube method. Simulation results(capacity and power consumption) were compared with calorimeter test results of actual air-conditioners of window and split types, where more than 82% of the data lied within ${\pm}5$% of the predicted results.

  • PDF

모세유관 바닥복사 냉·난방 시스템의 성능평가 (Performance Evaluation of the Capillary Tube Radiant Floor Cooling & Heating System)

  • 서유진;김태연;이승복
    • KIEAE Journal
    • /
    • 제12권4호
    • /
    • pp.89-95
    • /
    • 2012
  • At present, many countries are trying to reduce green gas emissions to mitigate the effects of these gases on climate change. Year after year, there have been efforts to cut energy use for heating and cooling. Heating and cooling systems, common in all forms of housing, are increasing due to the constant supply of new housing resulting from improvements in economic growth and the quality of life. Thus, studies related to the design of cooling and heating systems to improve energy efficiency are expanding. Among the new designs, radiant floor cooling and heating systems which use capillary tubes are becoming viable means of reducing energy use. Radiant floor cooling and heating systems which use capillary tubes are creative and sustainable systems in which cool and hot water is circulated into capillary tube which has small diameter. In this study, the cooling and heating performance of this type of capillary tube system is investigated in an experimental study and a simulation using TRNSYS. The results of the experimental study show that under a peak load, a capillary tube radiant floor cooling system using geothermal energy can achieve desired indoor temperature without an additional heat source. The set room air temperature is maintained while the floor surface temperature, PMV and PPD remain within the comfort range. Also, this system is more economic than a packaged air conditioner system due to its higher COP. The results of the simulation show that the capillary tube radiant floor heating system maintains set temperature more stable than a PB pipe radiant floor heating system due to its lower supply temperature of hot water. In terms of energy consumption, the capillary tube radiant floor heating system is more efficient than the PB pipe radiant floor heating system.

감온 팽창밸브 및 모세관 성능 시뮬레이션 프로그램 개발 (Development of simulation program for TXV and capillary tube performance analysis)

  • 박봉수;한창섭
    • 설비공학논문집
    • /
    • 제12권2호
    • /
    • pp.170-180
    • /
    • 2000
  • The equation which is related to TXV performance was investigated. On the basis of this equation, the TXV simulation program was developed. Results of the developed TXV simulation program were proven by the experiment on the influence of pressure difference between TXV entrance and exit and equalizing pressure. Simulation results show very good agreement with experimental results, the RMS error between them was 1.83%. The capillary tube simulation program was made by the basic equation of fluid dynamics. Results of this program were proven by data which were experimented previously. The RMS error between simulation results and experimental results was 4.13% .

  • PDF

비단열 모세관의 형상 변경에 따른 소형 냉동 사이클 성능 해석 (Simulation of the small Refrigeration Cycle as shape change of the Non-Adiabatic Capillary Tube)

  • 남기원;이대용;박상구;정지환;김윤수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.550-555
    • /
    • 2009
  • The present simulation focuses on the effect of the shape of capillary tube-suction line heat exchangers(SLHX), The results in the three cases of the SLHX types show that both of the location and length of heat exchange section influence the coefficient of performance(COP) and cooling capacity. Simulation shows the COP may be improved by 4.6% and the cooling capacity may be improved by 13.6% in the Lateral type.

  • PDF

증발 지연 구간을 포함한 비단열 모세관에서의 냉매 유동 특성 예측을 위한 시뮬레이션 (A Simulation for predicting the Refrigerant Flow Characteristics Including Metastable Region in Non-Adiabatic Capillary Tubes)

  • 손기동;박상구;정지환;김윤수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.263-270
    • /
    • 2008
  • The capillary tube/suction line heat exchanger (SLHX) is widely used in small refrigeration systems. The refrigerant flowing in the SLHX experiences frictional and accelerational head losses, flashing, and heat transfer simultaneously. The simulation of refrigerant flow through SLHX is important since this will help engineers analyze and optimize the SLHX incorporated in a refrigeration system. The present SLHX model is based on conservation equations of mass, momentum and energy. Also a meta-stable model is included. All these equations are solved simultaneously. In this paper, HFC-134a refrigerant flow through a non-adiabatic capillary tube is simulated. The simulation results are discussed but not validated against experimental measurements yet.

  • PDF

저온온수 모세유관 바닥복사 난방시스템의 성능에 관한 실험적 연구 (Experimental Study on a Low-Temperature Hot Water Capillary Radiant Floor Heating System)

  • 조진균;박병용;이용준;정원호
    • 설비공학논문집
    • /
    • 제30권2호
    • /
    • pp.68-82
    • /
    • 2018
  • Radiant floor heating systems with capillary tubes are energy saving systems in which hot water is circulated into capillary tube with a small diameter. In this study, the heating performance of capillary tube system is investigated in an experimental study and a simulation model. The results of the study showed that, the capillary tube radiant floor heating system maintains a more stable floor surface temperature in comparison a PB pipe system. In terms of energy consumption, the capillary tube radiant floor heating system proved to be more efficient than the PB pipe heating system at $40^{\circ}C$ of low temperature hot water supply. The difference between water temperature and room temperature can be held low for heating which saves energy. Low temperature radiant floor heating system with capillary tubes have significant advantages such as health improvement, low energy cost, optimum use of heat source(boiler) and higher operational efficiency.