• Title/Summary/Keyword: Capillary force lithography

Search Result 16, Processing Time 0.024 seconds

Patterning of liquid crystal alignment layers using selective dewetting process in a thermoplastic polymer film

  • Kim, Hak-Rin;Shin, Min-Soo;Lee, You-Jin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1719-1722
    • /
    • 2006
  • We proposed a soft-lithographic method for aligning a liquid crystal (LC) in patterned azimuthal orientations. It is demonstrated that a thermoplastic polystyrene layer is patterned from a thermally stable polyimide layer via pressure-assisted capillary force lithography, which provides multidirectional LC alignment condition simply followed by a unidirectional rubbing process.

  • PDF

A Study on Dynamic Analysis of Nano Fountain Pen (나노 파운틴펜의 동적해석에 관한 연구)

  • Lee, Young-Kwan;Kim, Hun-Mo;Kim, Youn-Jae;Lee, Suk-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.922-929
    • /
    • 2006
  • In this study, flow characteristics of the FPN (Fountain Pen Nano-Lithography) using active membrane pumping are investigated. This FPN has integrated chamber, micro channel, and high capacity reservoir for continuous ink feed. The most important aspect in this probe provided control of fluid injection using active membrane pumping in chamber. The flow rates in channel by capillary force are theoretically analyzed, including the control of mass flow rates by deflection of membrane. The above results are compared with numerical simulations that calculated by commercial code, FLUENT. The velocity of fluid in micro channel shows linear behaviors. And the mass flows are proportional to the second order function of pumping pressure that is imposed to membrane.

  • PDF

Capillary Assembly of Silicon Nanowires Using the Removable Topographical Patterns

  • Hong, Juree;Lee, Seulah;Lee, Sanggeun;Seo, Jungmok;Lee, Taeyoon
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.509-514
    • /
    • 2014
  • We demonstrate a simple and effective method to accurately position silicon nanowires (Si NWs) at desirable locations using drop-casting of Si NW inks; this process is suitable for applications in nanoelectronics or nanophotonics. Si NWs were assembled into a lithographically patterned sacrificial photoresist (PR) template by means of capillary interactions at the solution interface. In this process, we varied the type of solvent of the SiNW-containing solution to investigate different assembly behaviors of Si NWs in different solvents. It was found that the assembly of Si NWs was strongly dependent on the surface energy of the solvents, which leads to different evaporation modes of the Si NW solution. After Si NW assembly, the PR template was cleanly removed by thermal decomposition or chemical dissolution and the Si NWs were transferred onto the underlying substrate, preserving its position without any damage. This method enables the precise control necessary to produce highly integrated NW assemblies on all length scales since assembly template is easily fabricated with top-down lithography and removed in a simple process after bottom-up drop-casting of NWs.

A Study on Flow Characteristics of Fountain-pen Nano-Lithography with Active Membrane Pumping (능동적 박막 펌핑에 의한 파운틴 펜 나노 리소그래피 유동 특성에 관한 연구)

  • Lee Jin-Hyoung;Lee Young-Kwan;Lee Sung-Kun;Lee Suk-Han;Kim Youn-Jea;Kim Hun-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.722-730
    • /
    • 2006
  • In this study, the flow characteristics of a FPN (Fountain Pen Nano-Lithography) using active membrane pumping are investigated. The FPN has integrated chamber, micro channel, and high capacity reservoir for continuous ink feed. The most important aspect in this probe provided control of fluid injection using active membrane pumping in chamber. The flow rates in channel by capillary force are theoretically analyzed, including the control of the mass flow rates by the deflection of the membrane. The above results are compared with the numerical simulations that calculated by commercial code, FLUENT. The velocity of the fluid in micro channel shows linear behaviors. And the mass flows are proportional to the second order function of the pumping pressure that is imposed to the membrane.

Development of micro- and nanostructures mimicking natural leaf surfaces for controlled hydrophilic and hydrophobic property

  • Kim, Daun;Park, Sunho;Lee, Dohyeon;Nam, Hyeun;Kim, Jangho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.110-110
    • /
    • 2017
  • Biological systems offer unique principles for the design and fabrication of engineering platforms (i.e., popularly known as "Biomimetics") for various applications in many fields. For example, the lotus leaves exhibit unique surfaces consisting of evenly distributed micro and nanostructures. These unique surfaces of lotus leaves have the ability of superhydrophobic property to avoid getting wet by the surrounding water (i.e., Lotus effect). Inspired by the surface topographies of lotus leaves, the artificial superhydrophobic surfaces were developed using various micro- and nanoengineering. Here, we propose new platforms that can control hydrophilic and hydrophobic property of surfaces by mimicking micro- and nanosurfaces of various natural leaves such as common camellia, hosta plantaginea, and lotus. Using capillary force lithography technology and polymers in combination with biomimetic design principle, the unique micro- and nanostructures mimicking natural surfaces of common camellia, hosta plantaginea, and lotus were designed and fabricated. We also demonstrated that the replicated polymeric surfaces had different hydrophilic and hydrophobic properties according to the mimicking the natural leaf surfaces, which could be used as a simple, but powerful methodology for design and fabrication of controlled hydrophilic and hydrophobic platforms for various applications in the field of agriculture and biological engineering.

  • PDF