• Title/Summary/Keyword: Capacity ratio

Search Result 3,715, Processing Time 0.037 seconds

Estimation of Punching Shear Strength for Ultra High Performance Concrete Thin Slab (강섬유 보강 초고성능 콘크리트 슬래브의 뚫림 전단 성능 평가)

  • Park, Ji-Hyun;Hong, Sung-gul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2015
  • UHPC(Ultra High Performance Concrete) is used widely with its remarkable performance, such as strength, ductility and durability. Since the fibers in the UHPC can control the tensile crack, the punching shear capacity of UHPC is higher than that of the conventional concrete. In this paper, seven slabs with different thickness and fiber volume ratio were tested. The ultimate punching shear strength was increased with the fiber volume ratio up to 1%. The shear capacity of specimens with the fiber content 1% and 1.5% do not have big differences. The thicker slab has higher punching shear strength and lower deformation capacity. The critical sections of punching shear failure were similar regardless of the fiber volume ratio, but it were larger in thicker slab.

Rotation capacity of composite beam connected to RHS column, experimental test results

  • Eslami, Mohammadreza;Namba, Hisashi
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.141-159
    • /
    • 2016
  • Commonly in steel frames, steel beam and concrete slab are connected together by shear keys to work as a unit member which is called composite beam. When a composite beam is subjected to positive bending, flexural strength and stiffness of the beam can be increased due to "composite action". At the same time despite these advantages, composite action increases the strain at the beam bottom flange and it might affect beam plastic rotation capacity. This paper presents results of study on the rotation capacity of composite beam connected to Rectangular Hollow Section (RHS) column in the steel moment resisting frame buildings. Due to out-of-plane deformation of column flange, moment transfer efficiency of web connection is reduced and this results in reduction of beam plastic rotation capacity. In order to investigate the effects of width-to-thickness ratio (B/t) of RHS column on the rotation capacity of composite beam, cyclic loading tests were conducted on three full scale beam-to-column subassemblies. Detailed study on the different steel beam damages and concrete slab damages are presented. Experimental data showed the importance of this parameter of RHS column on the seismic behavior of composite beams. It is found that occurrence of severe concrete bearing crush at the face of RHS column of specimen with smaller width-to-thickness ratio resulted in considerable reduction on the rate of strain increase in the bottom flange. This behavior resulted in considerable improvement of rotation capacity of this specimen compared with composite and even bare steel beam connected to the RHS column with larger width-to-thickness ratio.

Experimental Study on Capacity Variation of Paving Materials with TiO2 in Wet Condition (광촉매 이산화티타늄(TiO2)을 혼합한 도로 포장재의 습윤 조건에서의 성능 변화에 관한 실험적 연구)

  • Seo, Dawa;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.49-55
    • /
    • 2016
  • This study aims to present the practical Nitrogen monoxide (NO) removal capacity of cement mortar with Titanium dioxide ($TiO_2$) which is one of the paving materials by considering the environment of pavement in urban areas. NO removal capacity test under designated conditions of humidity of inflow gas and the test with variation of the degree of saturation of specimen were conducted. In the test for humidity, dry specimen is subject to the test and NO removal ratio was observed. Humidity-NO removal ratio curve is a log normal distribution in shape, and the maximum NO removal ratio appears at specific humidity. NO removal capacity test relying on the degree of saturation was carried out with wet specimen to reflect the unsaturated pavement by rainfall and domestic sewage. Wet specimen presents less NO removal capacity than dry specimen and the recovering evolution of NO removal capacity follows evaporation. Moreover, $TiO_2$ under the specific depth of specimen hardly contributes to NO removal capacity.

Comparison of Aerobic and Anaerobic Capacity between Sasang Consititutions and ACE Gene Polymorphismn (사상체질과 ACE 유전자 다형성 분류에 따른 유·무산소성 능력비교)

  • Seck, Dong-Sun;Park, Kyu-Jung
    • Journal of Korean Clinical Health Science
    • /
    • v.3 no.2
    • /
    • pp.340-353
    • /
    • 2015
  • Purpose. This study of purpose was to to compare of Aerobic and Anaerobic Capacity between Sasang Constitutions and ACE Gene Polymorphism. Methods. 24 healthy males were participated in this experiment who were in their twenties and had no disease, then they were divided by ACE type and by Sasang constitutions with QSCC II. According to these group, the body compositon, Aerobic capacity including VO2max, Anaerobic Capacity were measured. Results. In this study, According to ACE type, ID type were 8, II were 8 and DD type were 8 persons. According to ACE type, there were significant difference among type, especially, II, ID type more than DD. II type is more higher than any type and DD type is lower in the ratio of Blood Lactic recovery. DD type was more excellent than other type in Anaerobic power. According to Sasang Constitutions, there were 8 SoYang, 5 Taeum, 11 Soeum and then no TaeYang constitution. In Aerobic capacity, Taeum constitution had significantly high means and Anaerobic threshold. In the ratio of Blood lactic recovery, Taeum constitution was excellent and SoYang had poor recovery capacity. SoYang had more excellent than other constitution significantly in Anaerobic capacity. Comparing ACE type with Sasang constitution, Soyang constitution included 4 ID types, Taeum inclued 2 II types and 2 ID types then Soeum included 6 DD types. Compared of Aerobic and Anaerobic capacity between Sasang constitutions and ACE type, Soyang constitutions were similar to ID type, Taeum similar to II type and ID type and then Soeum were DD type. Conclusions. This study had made it clear that there were similar feature between ACE type and Sasang constitutions. Also it's possible to predict the Aerobic capacity that may be foreseen by ACE type with Sasang questionnaire method but not Anaerobic capacity.

Composite action of concrete-filled double circular steel tubular stub columns

  • Wang, Liping;Cao, Xing-xing;Ding, Fa-xing;Luo, Liang;Sun, Yi;Liu, Xue-mei;Su, Hui-lin
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.77-90
    • /
    • 2018
  • This paper presents a combined numerical, experimental, and theoretical study on the behavior of the concrete-filled double circular steel tubular (CFDT) stub columns under axial compressive loading. Four groups of stub column specimens were tested in this study to find out the effects of the concrete strength, steel ratio and diameter ratio on the mechanical behavior of CFDT stub columns. Nonlinear finite element (FE) models were also established to study the stresses of different components in the CFDT stub columns. The change of axial and transverse stresses in the internal and external steel tubes, as well as the change of axial stress in the concrete sandwich and concrete core, respectively, was thoroughly investigated for different CFDT stub columns with the same steel ratio. The influence of inner-to-outer diameter ratio and steel ratio on the ultimate bearing capacity of CFDT stub columns was identified, and a reasonable section configuration with proper inner-to-outer diameter ratio and steel ratio was proposed. Furthermore, a practical formula for predicting the ultimate bearing capacity was proposed based on the ultimate equilibrium principle. The predicted results showed satisfactory agreement with both experimental and numerical results, indicating that the proposed formula is applicable for design purposes.

A Study on the Channel Capacity of Fading Channel (페이딩 통신로의 통신 용량에 관한 연구)

  • 고봉진;황인수;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1136-1145
    • /
    • 1993
  • The channel capacities of various lading channels are calculated and compared with that of Gaussian noise channel to find out the decrements of channel capacity according to each fading environment. As a result, it is confirmed that the channel capacities in Rician and m-distribution fading channels approach to that of Gaussian noise channel as direct-to-indirect power ratio in Rician fading channel and fading index m in m-distribution fading channel increases respectively. And the difference between two channel capacities of Gaussian noise channel and each fading channel which is dependent on carrier-to-noise power ratio (CNR) is found. Also the improvement of channel capacity of Rayleigh fading channel by introducing two-branch diversities is obtained. For diversity reception, predetection maximal-ratio and postdetection selective combining techniques are adopted. The results show that the improvement of channel capacity by predetection maximal-ratio combining diversity is superior to the postdetection selective combining diversitiy regardless of correlation coefficient between two diversity branches in Raylelgh fading channel. The best improvement is achieved when two branches are noncorrelative in both two diversify techniques and as correlation coefficient of two diversity branches is smaller, the improvement of channel capacity is greater.

  • PDF

Study on the Load-Carrying Capacity of Finite-Width Slider Bearing with Wavy Surface (표면웨이브가 존재하는 유한폭 슬라이더 베어링의 지지하중 특성에 관한 연구)

  • Shin, Jung-Hun;Lee, Gi-Chun;Park, Jong-Won;Kang, Bo-Sik;Kim, Kyung Woong
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • Slider bearing is a widely used load-carrying element in the industry. While a large number of studies have investigated the effect of overall surface curvature, very few have considered sinusoidal surface. Recently, consideration of surface roughness/waviness or intentional wave design has been identified as an important issue in the manufacture of hard disk driver, mechanical seal, hydraulic machine, and etc. This study investigated the load-carrying capacity of a finite-width slider bearing with a wavy surface. Film thickness ratios, length-width ratio, ambient pressure, amplitude, and partial distribution were selected as the simulation parameters. The calculation results showed that the load-carrying capacity rapidly varied at small film thickness ratio, but the waviness near the area of minimum film thickness made much more influence with an increase in film thickness ratio. As the length-width ratio of bearing was increased, ambient pressure became more influential at small film thickness ratios. Furthermore a particular partial distribution of the wavy area led to higher load-carrying capacity than did the whole distribution. Consequently, the results of this study are expected to be of use in surface micro-machining of finite-width slider bearings.

Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns

  • Dong, Jing;Ma, Hui;Zou, Changming;Liu, Yunhe;Huang, Chen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.43-60
    • /
    • 2019
  • This paper presents a finite element model which can simulate the axial compression behavior of steel reinforced recycled concrete (SRRC) filled square steel tube columns using the ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of material in the columns. The nonlinear analysis of failure modes, deformation characteristics, stress nephogram, and load-strain curves of columns under axial loads was performed in detail. Meanwhile, the influences of recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, width thickness ratio of square steel tube, RAC strength and slenderness ratio on the axial compression behavior of columns were also analyzed carefully. It shows that the results of finite element analysis are in good agreement with the experimental results, which verifies the validity of the analytical model. The axial bearing capacity of columns decreased with the increase of RCA replacement percentage. While the increase of wall thickness of square steel tube, profile steel ratio and RAC strength were all beneficial to improve the bearing capacity of columns. Additionally, the parameter analysis of finite element analysis on the columns was also carried out by using the above numerical model. In general, the SRRC filled square steel tube columns have high bearing capacity and good deformation ability. On the basis of the above analysis, a modified formula based on the American ANSI/AISC 360-10 was proposed to calculate the nominal axial bearing capacity of the columns under axial loads. The research conclusions can provide some references for the engineering application of this kind of columns.

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan;Haneen M. Sawalha
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.661-678
    • /
    • 2024
  • The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.

Study on structural damping of aluminium using multi-layered and jointed construction

  • Nanda, B.K.;Behera, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.631-653
    • /
    • 2005
  • In this work, the mechanism of damping and its theoretical evaluation for layered aluminium cantilever structures jointed with a number of equispaced connecting bolts under an equal tightening torque have been considered. Extensive experiments have been conducted on a number of specimens for comparison with numerical results. Intensity of interface pressure, its distribution pattern, dynamic slip ratio and kinematic coefficient of friction at the interfaces, relative spacing of the connecting bolts, frequency and amplitude of excitation are found to play a major role on the damping capacity of such structures. It is established that the damping capacity of structures jointed with connecting bolts can be improved largely with an increase in number of layers maintaining uniform intensity of pressure distribution at the interfaces. Thus the above principle can be utilized in practice for construction of aircraft and aerospace structures effectively in order to improve their damping capacity which is one of the prime considerations for their design.