• Title/Summary/Keyword: Capacity of use

Search Result 3,309, Processing Time 0.028 seconds

Evaluation of seismic collapse capacity of regular RC frames using nonlinear static procedure

  • Jalilkhani, Maysam;Manafpour, Ali Reza
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.647-660
    • /
    • 2018
  • The Incremental Dynamic Analysis (IDA) procedure is currently known as a robust tool for estimation of seismic collapse capacity. However, the procedure is time-consuming and requires significant computational efforts. Recently some simplified methods have been developed for rapid estimation of seismic collapse capacity using pushover analysis. However, a comparative review and assessment of these methods is necessary to point out their relative advantages and shortcomings, and to pave the way for their practical use. In this paper, four simplified pushover analysis-based methods are selected and applied on four regular RC intermediate moment-resisting frames with 3, 6, 9 and 12 stories. The accuracy and performance of the different simplified methods in estimating the median seismic collapse capacity are evaluated through comparisons with the results obtained from IDAs. The results show that reliable estimations of the summarized 50% fractile IDA curve are produced using SPO2IDA and MPA-based IDA methods; however, the accuracy of the results for 16% and 84% fractiles is relatively low. The method proposed by Shafei et al. appears to be the most simple and straightforward method which gives rise to good estimates of the median sidesway collapse capacity with minimum computational efforts.

A hybrid approach to predict the bearing capacity of a square footing on a sand layer overlying clay

  • Erdal Uncuoglu;Levent Latifoglu;Zulkuf Kaya
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.561-575
    • /
    • 2023
  • This study investigates to provide a fast solution to the problem of bearing capacity in layered soils with easily obtainable parameters that does not require the use of any charts or calculations of different parameters. Therefore, a hybrid approach including both the finite element (FE) method and machine learning technique have been applied. Firstly, a FE model has been generated which is validated by the results of in-situ loading tests. Then, a total of 192 three-dimensional FE analyses have been performed. A data set has been created utilizing the soil properties, footing sizes, layered conditions used in the FE analyses and the ultimate bearing capacity values obtained from the FE analyses to be used in multigene genetic programming (MGGP). Problem has been modeled with five input and one output parameter to propose a bearing capacity formula. Ultimate bearing capacity values estimated from the proposed formula using data set consisting of 20 data independent of total data set used in MGGP modelling have been compared to the bearing capacities calculated with semi-empirical methods. It was observed that the MGGP method yielded successful results for the problem considered. The proposed formula provides reasonable predictions and efficient enough to be used in practice.

Seismic behavior of fiber reinforced cementitious composites coupling beams with conventional reinforcement

  • Liang, Xingwen;Xing, Pengtao
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.261-271
    • /
    • 2018
  • Fiber reinforced cementitious composites (FRCC) materials that exhibit strain-hardening and multiple cracking properties under tension were recently developed as innovative building materials for construction. This study aims at exploring the use of FRCC on the seismic performance of coupling beams with conventional reinforcement. Experimental tests were conducted on seven FRCC precast coupling beams with small span-to-depth ratios and one ordinary concrete coupling beam for comparison. The crack and failure modes of the specimens under the low cycle reversed loading were observed, and the hysteretic characteristics, deformation capacity, energy dissipation capacity and stiffness degradation were also investigated. The results show that the FRCC coupling beams have good ductility and energy dissipation capacities compared with the ordinary concrete coupling beam. As the confinement stirrups and span-to-depth ratio increase, the deformation capacity and energy dissipation capacity of coupling beams can be improved significantly. Finally, based on the experimental analysis and shear mechanism, a formula for the shear capacity of the coupling beams with small span-to-depth ratios was also presented, and the calculated results agreed well with the experimental results.

Ergodic Capacity Analysis of OFDM Transmission Channel Applied to the MIMO Antennas Considering Spatial Propagation Property (공간적 전파전파 특성을 고려한 MIMO 안테나에 적용한 OFDM 전송 채널의 에르고딕 용량 분석)

  • Kim Chang-Joong;Lee Ho-Kyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.267-271
    • /
    • 2006
  • In this paper, we use the OFDM transmission channel model applied to the MIMO antennas considering spatial propagation property to evaluate and investigate the ergodic capacity of the channel. Specially, we have applied our results to 3GPP TR 25.99 V1.1.0 case 1 LOS off channel description and calculated ergodic capacity with parameters, cluster angle spread and angle of arrival(AOA). Our results show that as the cluster angle spread increase the channel capacity increase until 35 degree, but for more than 35 degree channel capacity does not improved.

A Study on the Infra-Capacity Analysis for Optimal Operating Environments of Supercomputer Center (슈퍼컴퓨터센터의 최적 운영환경을 위한 기반시설 용량 산정에 관한 연구)

  • Ryu, Young-Hee;Sung, Jin-Woo;Kim, Duk-Su;Kil, Seong-Ho
    • KIEAE Journal
    • /
    • v.10 no.2
    • /
    • pp.19-24
    • /
    • 2010
  • According to the increasing demands of supercomputer, an exclusive supercomputer building is requested to install a supercomputer for promoting high-end R&D as well as creating the public service infrastructure in the national level. KISTI, as a public supercomputer center with the 4th supercomputer (capacity of 360Tflops), is experiencing shortage of infrastructure systems, caused by increased capacity. Thus, it is anticipated that the situation will be growing serious when the 5th and 6th supercomputers will be installed. On this study, analyzed on the 5th supercomputer system through projecting performance level and optimal operating environments by assessing infra-capacity. Explored way to construct optimal operating environments through infrastructure-capacity analysis of supercomputer center. This study can be of use for reviewing KISTI's conditions as the only supercomputer center in Korea. In addition, it provides reference data for planning the new exclusive supercomputer center in terms of feasibility, while analyzing infrastructure systems.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

CAPACITY EXPANSION MODELING OF WATER SUPPLY IN A PLANNING SUPPORT SYSTEM FOR URBAN GROWTH MANAGEMENT (도시성장관리를 위한 계획지원체계에서 상수도의 시설확장 모델링)

  • Hyong-Bok, Kim
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1995.12a
    • /
    • pp.9-21
    • /
    • 1995
  • A planning support system enhances our ability to use water capacity expansion as an urban growth management strategy. This paper reports the development of capacity expansion modeling of water supply as part of the continuing development of such a planning support system (PEGASUS: Planning Environment for Generation and Analysis of Spatial Urban Systems) to incorporate water supply, This system is designed from the understanding that land use and development drive the demand for infrastructure and infrastructure can have a significant influence on the ways in which land is developed and used. Capacity expansion Problems of water supply can be solved in two ways: 1) optimal control theory, and 2) mixed integer nonlinear programming (MINLP). Each method has its strengths and weaknesses. In this study the MINLP approach is used because of its strength of determining expansion sizing and timing simultaneously. A dynamic network optimization model and a water-distribution network analysis model can address the dynamic interdependence between water planning and land use planning. While the water-distribution network analysis model evaluates the performance of generated networks over time, the dynamic optimization model chooses alternatives to meet expanding water needs. In addition, the user and capacity expansion modeling-to-generate-alternatives (MGA) can generate alternatives. A cost benefit analysis module using a normalization technique helps in choosing the most economical among those alternatives. GIS provide a tool for estimating the volume of demanded water and showing results of the capacity expansion model.

  • PDF

A Study on the Adequacy Evaluation of Criteria of Occupant Load Factor in Residential Buildings (주거용 건축물의 재실자밀도 기준 적정성 평가에 관한 연구)

  • Seo, Dong-Goo;Hwang, Eun-Kyoung
    • Journal of the Korean housing association
    • /
    • v.27 no.6
    • /
    • pp.145-153
    • /
    • 2016
  • The purpose of this study is to grasp the effectiveness of evacuation safety design by verifying the appropriateness of the standard of occupant load factor for residential buildings. To this end, the definition and current standard of occupant load factor for residential buildings were analyzed, and the problems of the current standard were clarified by interviewing professionals. In addition, changes in occupant load factor were examined by year based on statistical research, and evaluation on the current standard $18.6m^2/pers.$ was performed. As for evaluation methods, the need of redesigning of evacuation capacity was investigated by using evacuation simulation. As a result of the analysis, the most serious problem was clarification of the applicable standard for residential officetel, where the average occupant load factor was $26.1m^2/pers.$, which was not appropriate. However, as a result of evaluation on evacuation capacity, although there was no difference between statistical research results and the current standard in terms of evacuation capacity, when the standard for business facilities was applied to officetel, evacuation time doubled. Thus, this study suggests that when the current standard is applied to residential officetel, it is necessary to separate between residential use and business use.

Evaluation of Korea`s Sustainable Development by the System Ecology(I)-EMERGY Analysis of Korea`s Natural Environment and Economic Activity- (시스템 생태학적 접근법에 의한 한국의 지속적인 발전가능성 평가(I)-한국의 자연환경과 경제활동에 대한 EMERGY 평가-)

  • 이석모;손지호;강대석
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.449-454
    • /
    • 2000
  • Sustainable development has been the key concept, both in economic policies and in environmental management. On the basis of an systems ecology perspective, this suggests the sustainable development of Korea\`s natural environment and economic activity using the EMERGY evaluation. The total EMERGY use(7,730E20sej/yr) in Korea is 81 percent from imported sources, fuels and goods and services. The ratio of outside investment to attracting natural resources is already large, like other industrialized countries. Continued availability of purchased inputs at a favorable balance of EMERGY trade, currently about 2.85 to 1 net EMERGY, tis the basis for present economic activity and must decrease as the net EMERGY of purchased inputs including fossil fuels goes down. EMERGY yield ratio and environmental loading ratio were 1.23 and 20.30, respectively. The population level is already in excess of carrying capacity. Its carrying capacity for steady state on its renewable sources is only 2.2 million people, compared to 45.9 million in 1977. EMERGY sustainability index is therefore less than one, which is indicative of highly developed consumer oriented economies. Until now the development of a country has been achieved by the economic growth, but it can be sustained in the long run by the use of renewable resource systems. the efficiency of energy usage, and the transformation of the social-economic structure based on an ecological-recycling concept.

  • PDF

A Study on Optimum Design Condition for 'HEAT PUMP' System in Korea (한국에 있어서의 히이트 펌프계의 최적 설계 조건에 관한 연구)

  • Choe, Yeong-Bae
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.4
    • /
    • pp.304-315
    • /
    • 1981
  • This paper presents, the result of the study for the fluctuant temperature of the out-side air adopting the heat pump system in seoul, Taejean, Taegu, Busan and Jejeu among principle cities in korea for the purpose of checking the heating capacity, Heat pump capacity (outlet capacity), Coefficient of performance and running cost in comparison with the supporting the energy for the boiler's operation. According to the supply temperature changes of the out door coil by the out side air-return air mixing ratio, the Coefficient of performance is increased from 3. 1 to 5.0. Particularly, in Taegu, it is necessary to adopt the heat pump system against the supplement heat supply on the full outside air intake in January of the heating period, and it was recognized that the running cost is cheaper than that of the Boiler use. At the same time, if it is able to get $25\%$ of return air of the inside in the Seoul, it could be saved its costs when we use the supplementary boiler. And I think it is necessary to the development.

  • PDF