• Title/Summary/Keyword: Capacity Of Wind Power

Search Result 291, Processing Time 0.021 seconds

Feasibility study on the design of DC HTS cable core

  • Sim, Ki-Deok;Kim, Seok-Ho;Jang, Hyun-Man;Lee, Su-Kil;Won, Young-Jin;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.24-30
    • /
    • 2010
  • The renewable energy source is considered as a good measure to cope with the global warming problem and the fossil energy exhaustion. The construction of electric power plant such as an offshore wind farm is rapidly increasing and this trend is expected to be continued during this century. The bulky and long distance power transmission media is essential to support and promote the sustainable expansion of renewable energy source. DC power cable is generally considered as the best solution and the demand for DC electric power has been rapidly increasing. Especially, the high temperature superconducting (HTS) DC cable system begins to make a mark because of its advantages of huge power transmission capacity, low transmission loss and other environmental friendly aspects. Technical contents of DC HTS cable system are very similar to those of AC HTS cable system. However the DC HTS cable can be operated near its critical current if the heat generation is insignificant, while the operating current of AC HTS cable is generally selected at about 50~70% of the critical current because of AC loss. We chose the specifications of the cable core of 'Tres Amigas' project as an example for our study and investigated the heat generation when the DC HTS cable operated near the critical current by some electric and thermal analyses. In this paper, we listed some technical issues on the design of the DC HTS cable core and described the process of the cable core design. And the results of examination on the current capacity, heat generation, harmonic loss and current distribution properties of the DC HTS cable are introduced.

Artificial Intelligence Application using Nutcracker Optimization Algorithm to Enhance Efficiency & Reliability of Power Systems via Optimal Setting and Sizing of Renewable Energy Sources as Distributed Generations in Radial Distribution Systems

  • Nawaf A. AlZahrani;Mohammad Hamza Awedh;Ali M. Rushdi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.31-44
    • /
    • 2024
  • People have been using more energy in the last years. Several research studies were conducted to develop sustainable energy sources that can produce clean energy to fulfill our energy requirements. Using renewable energy sources helps to decrease the harm to the environment caused by conventional power plants. Choosing the right location and capacity for DG-RESs can greatly impact the performance of Radial Distribution Systems. It is beneficial to have a good and stable electrical power supply with low energy waste and high effectiveness because it improves the performance and reliability of the system. This research investigates the ideal location and size for solar and wind power systems, which are popular methods for producing clean electricity. A new artificial intelligent algorithm called Nutcracker Optimization Algorithm (NOA) is used to find the best solution in two common electrical systems named IEEE 33 and 69 bus systems to examine the improvement in the efficiency & reliability of power system network by reducing power losses, making voltage deviation smaller, and improving voltage stability. Finally, the NOA method is compared with another method called PSO and developed Hybrid Algorithm (NOA+PSO) to validate the proposed algorithm effectiveness and enhancement of both efficiency and reliability aspects.

A Study on Decision Plan of Hosting Capacity for Distribution Feeder (배전선로 연계용량 선정방안에 관한 연구)

  • Kim, Seong-Man;Oh, Joon-Seok;Kim, Ok-Hee;Lim, Hyeon-Ok;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.653-660
    • /
    • 2021
  • Renewable energy resources are rapidly becoming an integral part of electricity generation portfolios around the world due to declining costs, government subsidies, and corporate sustainability goal. Interacting wind, solar, and load forecast errors can create significant unpredictable impacts on the distribution system, feeder congestion, voltage standard and reactive power stability margins. These impacts will be increasing with the increasing penetration levels of variable renewable generation in the power systems. There is a limit to the maximum amount of renewable energy sources that can be connected in a distribution feeder by the connection rule of transmission & distribution facility in Korea. This study represents the decision plans of hosting capacity for distribution feeders without the need for significant upgrades to the existing transmission infrastructure. Especially, the paper suggests and discusses the hosting capacity standard of feeder cables and minimum load calculation of distribution feeders.

Implementation of Super High-speed Permanent Magnet Synchronous Machine Drive (영구 자석 동기 전동기의 초고속 운전에 관한 연구)

  • Kim, Myoung-Ho;Yim, Jung-Sik;Sul, Seung-Ki;Lim, Sung-Il
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.329-335
    • /
    • 2008
  • Recently, super high-speed motor drives have been available due to the development of power electronics technology And they are used in various fields of industry because of their advantages. This paper describes the control algorithm for a permanent magnet synchronous motor(PMSM) drive at the speed of 118,000r/min using DSP and IGBT inverter. Hall sensors are implemented to measure the rotor position and speed, and a speed observer is used to reduce the performance deterioration caused by the low resolution of hall sensors. To enhance the output power capacity in the high-speed operating region, a flux weakening controller which also can work as an anti-wind up controller is used. Computer simulations and experiments are peformed to validate the proposed method.

Optimized Installation and Operations of Battery Energy Storage System and Electric Double Layer Capacitor Modules for Renewable Energy Based Intermittent Generation

  • Min, Sang Won;Kim, Seog Ju;Hur, Don
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.238-243
    • /
    • 2013
  • In this paper, a novel approach for optimized installation and operations of battery energy storage system (BESS) and electric double layer capacitor (EDLC) modules for the renewable energy based intermittent generation is presented for them to be connected with an electric power grid. In order to make use of not merely the high energy density of battery but also the high power density of EDLC modules, it is very useful to devise the hybrid system which combines BESS and EDLC modules. The proposed method adopts the linear programming to calculate the optimized capacity as well as the quadratic programming to transmit the optimal operational signals to BESS and EDLC modules. The efficiency of this methodology will be demonstrated in the experimental study with the real data of wind speed in Texas.

The System Dynamics Model Development for Forecasting the Capacity of Renewables (신재생에너지 보급량 예측을 위한 시스템다이내믹스 모델 개발)

  • Kim, Hyun-Shil;Ko, Kyung-Ho;Ahn, Nam-Sung;Cho, Byung-Oke
    • Korean System Dynamics Review
    • /
    • v.7 no.2
    • /
    • pp.35-56
    • /
    • 2006
  • Korea is implementing strong regulatory derives such as Feed in Tariff to provide incentives for renewable energy developers. But if the government is planning to increase the renewable capacity with only "Price policy" not considering the investors behavior in the competitive electricity market, the policy would be failed. It is necessary system thinking and simulation model analysis to decide government's incentive goal. This study is focusing on the assesment of the competitiveness of renewable energy with the current Feed in Tariff incentives compared to the traditional energy source, specially coal and gas. The simulation results show that the market penetration of renewable energy with the current Feed-in-Tariff level is about 60-70% of the government goal under condition that the solar energy and fuel cell are assumed to provide the whole capacity set in the governmental goal. If the contribution from solar and fuel cell is lower than planned, the total penetration of renewable energy will be dropped more. Notably, Wind power turned out to be proved only 10% of government goal because of its low availability.

  • PDF

Damping Properties of a Superconductor Bearing in a 35 kWh Class Superconductor Flywheel Energy Storage System (35 kWh급 플라이휠용 초전도 베어링의 댐핑 특성평가)

  • Park, B.J.;Jung, S.Y.;Han, S.C.;Han, S.J.;Lee, D.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 2012
  • Superconductor flywheel energy storage system (SFESs) is an electro-mechanical battery with high energy storage density, long life, and good environmental affinity. SFESs have been developed for application to a regenerative power of train, the storage of distributed power sources such as solar and wind power, and a power quality improvement. As superconductor bearing is completely passive, it is not necessary to control a system elaborately but accurate analysis in mechanical properties of the HTS bearing is very important for application to SFESs. Stiffness and damping properties are the main index for evaluation the capacity of HTS bearings and make it possible to adjust rotordynamic properties while operating the rotor-bearing system. The superconductor bearing consists of a stator containing single grain YBCO bulks, a ring-type permanent magnet rotor with a strong magnetic field that can reach the bulk surface, and a bearing support for assembly to SFESs frame. In this study, we investigated the stiffness and damping properties of superconductor bearings in 35 kWh SFESs. Finally, we found that 35 kWh superconductor bearing has uniform stiffness properties depend on the various orientations of rotor vibration. We discovered total damping coefficient of superconductor bearing is affected by not only magnetic damping in superconductor bulk but also external damping in bearing support. From the results, it is confirmed that the conducted evaluation can considerably improve energy storage efficiency of the SFESs, and these results can be used for the optimal capacity of superconductor bearings of the SFESs.

The Advanced Voltage Regulation Method for ULTC in Distribution Systems with DG

  • Kim, Mi-Young;Song, Yong-Un;Kim, Kyung-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.737-743
    • /
    • 2013
  • The small-scaled onsite generators such as photovoltaic power, wind power, biomass and fuel cell belong to decarbonization techniques. In general, these generators tend to be connected to utility systems, and they are called distributed generations (DGs) compared with conventional centralized power plants. However, DGs may impact on stabilization of utility systems, which gets utility into trouble. In order to reduce utility's burdens (e.g., investment for facilities reinforcement) and accelerate DG introduction, the advanced operation algorithms under the existing utility systems are urgently needed. This paper presents the advanced voltage regulation method in power systems since the sending voltage of voltage regulators has been played a decisive role restricting maximum installable DG capacity (MaxC_DG). For the proposed voltage regulation method, the difference from existing voltage regulation method is explained and the detailed concept is introduced in this paper. MaxC_DG estimation through case studies based on Korean model network verifies the superiority of the proposed method.

The Smart Monitoring System for implementing All-in-One 9-Nautical mile LED lantern (일체형 9해리 LED 등명기 구현을 위한 스마트 모니터링 시스템)

  • Lim, Gyu-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1349-1354
    • /
    • 2021
  • An All-in-one LED lantern is a light device to determine the fairway of ships in operation. The current all-in-one LED lantern powered by solar energy is challenged by insufficient power capacity due to limited sun hours. This article presents an all-in-one 9-Nautical mile LED lantern driven by solar and wind power that is abundant maritime renewable energy. Furthermore, the remote smart monitoring system is developed. A smart control system capable of remote control of the lantern was implemented by using the LED lantern device and monitoring system as IoT. This technology that realtime condition monitoring and remote control are developed for safe ship navigation. We expect that maintaining the accuracy and consistency of LED lanterns prevents marine accidents and reduces social costs.

A Study on the Environmental Impact of Offshore Wind Farms Through Monitoring Case in Overseas Country (W국외 모니터링 사례를 통한 해상풍력발전의 환경적 영향 고찰)

  • Maeng, Jun-Ho;Cho, Beom-Jun;Lim, O-Joung;Seo, Jane
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.276-289
    • /
    • 2013
  • In developing offshore wind farms, many environmental issues arise because of the concentration on supply demand and economic logic. Accordingly, community conflict is induced. Especially, recent studies regarding the capacity and location of offshore wind development have been conducted considering wind states and ocean conditions, etc. of coastal seas in Republic of Korea. Nevertheless, studies on the impact of marine environments and ecosystems are very limited so far. Environmental monitoring that follows development projects has been actively done in the offshore wind farms in many developed European countries. In contrast, there is no domestic monitoring data regarding environmental impacts caused by installing and operating offshore wind power. Therefore, the environmental impacts under construction and operation phases as well as the guidelines in the stage of environmental impact assessment suited for domestic coastal seas are well presented in this study by analyzing monitoring cases and references of overseas offshore wind farm. For this reason, this research is ultimately aimed at minimizing the environmental impact in offshore wind farm development and thus simplify administrative procedures in Korea.