• Title/Summary/Keyword: Capacity Design Tool

Search Result 168, Processing Time 0.031 seconds

Seismic Performance Evaluation of Mechanically Jointed PE Pipeline by Response Displacement Method (기계식 이음 PE관의 응답변위법 기반 내진성능평가 요령)

  • DongSoon Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.23-32
    • /
    • 2023
  • The seismic performance of buried PE pipes is reported to be favorable due to their exceptional elongation capacity at break. Although a seismic performance evaluation procedure based on the response displacement method has been summarized in Korea for fusion-bonded PE pipes, there is currently no procedure available for mechanically jointed PE pipes. This article aims to present a seismic performance evaluation procedure based on the response displacement method specifically designed for mechanically jointed PE pipes in Korea. When employing the mechanical joining method for PE pipes, it is recommended to adhere to the evaluation procedure established for segment-type pipes. This involves assessing the stress induced by the pipe, the expansion and contraction strain of the joint, and the bending angle of the pipe joint. Furthermore, the coefficient of inhomogeneity of the soil, which is necessary for estimating the axial strain of the ground, is introduced. Additionally, a computation method for determining lateral displacement and reconsolidation settlement in soil susceptible to liquefaction is proposed. As a result of the sensitivity analysis considering the typical soil condition in Korea, the mechanically jointed PE pipe with a certain quality was shown to have good structural seismic safety when soil liquefaction was not considered. This procedure serves as a valuable tool for seismic design and evaluating the seismic performance of mechanically joined buried PE pipes, which are primarily utilized for connecting small-diameter pipes.

A rock physics simulator and its application for $CO_2$ sequestration process ($CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용)

  • Li, Ruiping;Dodds, Kevin;Siggins, A.F.;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.

RRP Loading Patterns and Standard Dimensions for Block Pattern in Membership Wholesale Clubs (Membership Wholesale Club에서의 RRP 적재패턴 및 블록패턴 표준규격에 관한 연구)

  • Jung, Sung-Tae;Han, Kyu-Chul
    • Journal of Distribution Science
    • /
    • v.13 no.7
    • /
    • pp.41-51
    • /
    • 2015
  • Purpose - This study analyzes loading efficiency by loading pattern for package standardization and reduction of logistics costs, along with the creation of revenue for the revenue review panel (RRP) of Membership Wholesale Clubs (MWC). The study aims to identify standard dimensions that can help improve the compatibility of the pallets related to display patterns preferred by the MWC and thereby explore ways to enhance logistics efficiency between manufacturers and retailers through standardization. Research design, data, and methodology - The study investigates and analyzes the current status based on actual case examples, i.e., manufacturer A and Korea's MWC (A company, B company, and C company), and thus devises improvement measures. To achieve this, the case of manufacturer A delivering to MWC was examined, and the actual pallet display patterns for each MWC were investigated by visiting each distribution site. In this study, TOPS (Total Optimization Packaging Software, USA) was used as the tool for pallet loading efficiency simulations the maximum allowable dimension was set to 0.0mm to prevent the pallet from falling outside the parameters, and the loading efficiency was analyzed with the pallet area. In other words, the study focused on dimensions (length x width x height) according to the research purpose and thereby deduced results. Results - The analysis of pallet loading patterns showed that the most preferred loading patterns for loading efficiency according to product specification, such as pinwheel, brick, and block patterns, were used in the case of the general distribution products, but the products were configured with block patterns in most cases when delivered to MWCs. The loading efficiency by loading pattern was analyzed with respect to 104 nationally listed standard dimensions. Meanwhile, No.51 (330 × 220mm) of KS T 1002 (1,100 × 1,100mm) was found to be the dimension that could bring about an improved loading efficiency, over 90.0% simultaneously in both the T-11 and T-12 pallet systems in a loading pattern configuration with the block pattern only, and the loading efficiency simulation results also confirmed this as the standard dimension that can be commonly applied to both the T-11 pallet (90.0%) and the T-12 pallet (90.7%) systems. Conclusions - The loading efficiency simulation results by loading pattern were analyzed: For the T-11 pallet system, 17 standard dimension sizes displayed the loading efficiency of 90.0% or more as block patterns, and the loading capacity was an average of 99.0%. For the T-12 pallet system, 35 standard dimension sizes displayed the loading efficiency of more than 90% as block patterns (the average loading efficiency of 98.6%). Accordingly, this study proposes that the standard dimensions of 17 sizes with the average loading efficiency of 99.0% should be applied in the use of the T-11 pallet system, and those of 35 sizes with the average loading efficiency of 98.6% should be reviewed and applied in the use of the T-12 pallet system.

Effects of Representation Forms on Analysts' Identification of Systems Development Problems - An Empirical Study -

  • Kim, Jong-Uk
    • Asia pacific journal of information systems
    • /
    • v.10 no.2
    • /
    • pp.71-95
    • /
    • 2000
  • Despite repeated exhortation about the importance of social and human dimensions of systems development, socio-organizational issues continue to be neglected and ignored in the current information systems practice. A review of the human information processing literature suggests that the reasons for this continuing lack of attention to social issues may be found in the limitations of human cognition and information processing capacities. Bostrom and Heinen(1978) and Kumar and Bjorn-Anderson(1990) also suggest that the inadequate attention to social problems and issues by the analyst could originate from the analysts limited problem perception. This research explores how the representation forms of information systems(IS) methodology used in understanding and modeling the problem situation affect such systems development problem perception. Typically, a system development methodology prescribes the use of system models(i.e., system representations) to understand, analyze, evaluate, and design the information system. Given the size and complexity of information systems, and the abstraction and simplification underlying the modeling process, system representations usually depict only a limited set of aspects of the system. Thus, a methodology whose representations are limited to technical aspects will tend to limit the analyst's perspective to a technical one only(Kumar & Welke, 1990). Following the same line of argument, in contrast, it is the conjecture of this study that a methodology which specifies both social and technical aspects of IS development will help the analyst develop a more comprehensive view of the IS problem domain. Based on the above concept, a theoretical model was first developed which explained the systems analysts cognitive process. Drawing on this model, a research model was developed hypothesizing the impacts of representation forms on problem identification. The model was tested using a laboratory experiment with 70 individual subjects. A special computer software was developed with a hypermedia authoring tool to conduct the experiments in order to avoid experimenter biases and to maintain consistency in administrating repeated experiments. The program, designed to replace the experimenter, consisted of functions such as presenting the subjects with problem material, asking the subjects questions, and saving the typed answers of the subjects. The results indicate that representation forms strongly influence problem identification. It was found that the use of the socio-technical representation form led to the findings of more social problems than the use of technical representation form. The results imply significant effects of representation forms on problem findings and also suggest that the use of adequate representation forms may help overcome dysfunctional effects of our limited information processing capacity.

  • PDF

An Efficient Management of Network Traffic using Framework-based Performance Management Tool (프레임워크 기반 성능관리 도구를 이용한 효율적인 네트워크 트래픽 관리)

  • Choi Seong-Man;Tae Gyu-Yeol;Yoo Cheol-Jung;Chang Ok-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.3
    • /
    • pp.224-234
    • /
    • 2005
  • As the network-related technology develops the number of both Internet users and the usage are explosively increasing. The networking traffic is increasing in the campus as the networking system inside universities, following the trend, adds more nodes and various networking services. Nonetheless, the quality of services for users has been degraded. Accordingly, core problems, which can cause troubles for network management, design and expansion of the network, and the cost policy, has appeared. To effectively cope with the problems with analyses a great number of technicians, tools, and budget are needed. However, it is not possible for mid and small-sized colleges to spend such a high expenditure for professional consulting. To reduce the cost and investment creating the optimized environment, the analyses on the replacement of the tools, changing the network structure, and performance analysis about capacity planning of networking is necessary. For this reason, in this paper, framework-based performance management tools are used for all steps that are related to the subject of the analysis for the network management. As the major research method, the current data in detailed categories are collected, processed, and analyzed to provide the solution for the problems. As a result we could manage the network, server, and application more systematically and react efficiently to errors and degrading of performance that affect the networking tasks. Also, with the scientific and organized analyses the overall efficiency is upgraded by optimizing the cost for managing the operation of entire system.

Application of CFD Program for Analyzing the Hydrodynamic Characteristics of Baffled PAC Contactor (격벽식 분말활성탄 접촉조의 흐름해석을 위한 전산유체역학 프로그램의 적용)

  • Ahn, Chang-Jin;Ahn, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.221-229
    • /
    • 2002
  • For the efficient design of baffled Powdered activated carbon(PAC) contractor, which has been widely used in water treatment plant(WTP) against the algae-related odor problems, a CFD(computational fluid dynamics) program was applied. In order to verify the performance of FLOW-3D program, the previously reported results of tracer tests from a pilot-scale PAC contractor(working volume of 288 liters) were compared to those from FLOW 3D. The results of FLOW-3D simulation were very similar to those from tracer tests conducted with the Pilot-scale PAC contactor. On the other hand, the hydrodynamic characteristics of baffled contractor in the P-WTP were simulated by using FLOW-3D. Simulation results on the distribution of PAC particles showed that there are some stagnant parts in the back side of baffles in which PAC Particles are not present. These stagnant parts might decrease the adsorption capacity of PAC particles. When the baffles were changed to maze-type intra-basin baffling, PAC particles were evenly distributed and the amount of stagnant parts reduced. In conclusion, it is anticipated that FLOW-3D simulation could be a viab1e tool for analyzing the hydrodynamic characteristics of structures used in drinking water treatment plant.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

Evaluation of Disaster Resilience Scorecard for the UN International Safety City Certification of Incheon Metropolitan City (인천시 UN 국제안전도시 인증을 위한 재난 복원력 스코어카드 평가)

  • Kim, Yong-Moon;Lee, Tae-Shik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.1
    • /
    • pp.59-75
    • /
    • 2020
  • This study is a case study that applied 'UNDRR's Urban Disaster Resilience Scorecard', an evaluation tool necessary for Incheon Metropolitan City to be certified as an international safe city. I would like to present an example that the results derived from this scorecard contributed to the Incheon Metropolitan City Disaster Reduction Plan. Of course, the Disaster Resilience Scorecard can't provide a way to improve the resilience of every disaster facing the city. However, it is to find the weakness of the resilience that the city faces, and to propose a solution to reduce the city's disaster risk. This is to help practitioners to recognize the disaster risks that Incheon Metropolitan City faces. In addition, the solution recommended by UNDRR was suggested to provide resilience in areas vulnerable to disasters. It was confirmed that this process can contribute to improving the disaster resilience of Incheon Metropolitan City. UNDRR has been spreading 'Climate Change, Disaster-resistant City Creation Campaign', aka MCR (Making Cities Resilient) Campaign, to cities all over the world since 2010 to reduce global cities' disasters. By applying the disaster relief guidelines adopted by UNDRR, governments, local governments, and neighboring cities are encouraged to collaborate. As a result of this study, Incheon Metropolitan city's UN Urban Resilience Scorecard was evaluated as a strong resilience field by obtaining scores of 4 or more (4.3~5.0) in 5 of 10 essentials; 1. Prepare organization for disaster resilience and prepare for implementation, 4. Strong resilience Urban development and design pursuit, 5. Preservation of natural cushions to enhance the protection provided by natural ecosystems, 9. Ensure effective disaster preparedness and response, 10. Rapid restoration and better reconstruction. On the other hand, in the other five fields, scores of less than 4 (3.20~3.85) were obtained and evaluated as weak resilience field; 2. Analyze, understand and utilize current and future risk scenarios, 3. Strengthen financial capacity for resilience, 6. Strengthen institutional capacity for resilience, 7. Understanding and strengthening social competence for resilience, 8. Strengthen resilience of infrastructure. In addition, through this study, the risk factors faced by Incheon Metropolitan City could be identified by priority, resilience improvement measures to minimize disaster risks, urban safety-based urban development plans, available disaster reduction resources, and integrated disasters. Measures were prepared.