• Title/Summary/Keyword: Capacitor compensation

Search Result 201, Processing Time 0.035 seconds

Boost Converter Modelling of Photovoltaic Conditioning System Considering Input Capacitor (입력 커패시턴스를 포함한 PV Boost Converter 모델링)

  • Choi, Ju-Yeop;Lee, Ki-Ok;Choy, Ick;Song, Seung-Ho;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.85-95
    • /
    • 2008
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.

Output Voltage Control Technique Using Current Forward Compensation for Phase Shifted Full Bridge Converter Without Output Capacitor (출력 커패시터가 없는 위상천이 풀브릿지 컨버터의 전류 전향 보상을 이용한 출력 전압 제어 기법)

  • Shin, You-Seung;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yual;Kang, Jeong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.40-47
    • /
    • 2022
  • At present, the low-voltage, high-current type power supply is mainly used for effective sterilization in the ballast water treatment system. Research on PSFB converters without output capacitors has been ongoing. Such converters effectively treat ballast water without a separate disinfectant through electric pulses by applying a pulse-type power to the output electrode without an output capacitor. However, in the case of the pulse-type electrolysis treatment method, voltage overshoot can occur due to abrupt voltage fluctuations when the load changes, resulting in circuit reliability problems because of the output capacitorless system. Therefore, a new voltage control algorithm is required. In this paper, we will discuss voltage control for pulsed electrolysis topology without an output capacitor. The proposed voltage control method has been verified using Simulation and experiment. The usefulness of the proposed control method has been proven by the experimental results.

Resonance initial current compensation for Resonant DC-Link inverter (공진 DC-Link 인버터의 공진 초기전류의 보상에 관한 연구)

  • Kwak, Dong-Kurl;Suh, Ki-Young;Kwon, Soon-Kurl;Lee, Hyun-Woo;Woo, Jung-ln
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1136-1141
    • /
    • 1992
  • This paper proposes a control technique to obtain high frequency quasi sinusoidal DC-Link waveform permitting zero-voltage-switching(ZVS). This operation results in reduction of commutation stress and switching losses in the power devices because they cause no switching loss in principle. But in existing control methods, the resonant capacitor voltage is not frequently made of zero-cross oscillation. We propose an optimum control stratege which can sustain oscillation and keep the capacitor voltage at an allowable level. Some experimental results are included to confirm the validity of the analytical results.

  • PDF

Technique for the Prevention of Inrush Current in a TCC Reactive Power Compensator

  • Yang, Ji-Hoon;Song, Sung-Geun;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.149-158
    • /
    • 2018
  • With the propagation and spread of the new regeneration energy and increase in electricity demand, power systems tend to be decentralized, and accordingly, the use of a power system stabilizer tends to expand for the stabilization of the distribution system. Thus, typical power system stabilizer, Static Var Compensator (SVC) is developed on a variety of topologies. In addition, the trend of technology leads from SVC to Static Synchronous Compensator(STATCOM) technology development. Recently, to overcome STATCOM's conversion losses and economic disadvantages, studies of a hybrid method using STATCOM and SVC in parallel have actively been conducted. This study proposes a new Soft-Step Switching method to limit inrush current problematic in Thyristor Controlled Capacitor (TCC) method in SVC function. In addition, to reduce Statcom's capacity, groups of reactive power compensation reactor and condenser for SVC were designed.

A Novel Hysteresis Control Strategy Based on Ampere-Second Balance of the Modulate Capacitor

  • Zhao, Jin-Bin;Dai, Jian-Feng;Qu, Ke-Qing;Li, Fen
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1263-1271
    • /
    • 2014
  • A novel hysteresis PWM control strategy for synchronous buck converter is proposed. The proposed control strategy is based on ampere-second balance of the modulate capacitor, which not only offers faster transient response to meet the challenges of the power supply requirements of fast dynamic load changes, but also provides better stability and solves the compensation problem of error amplifier in the conversional voltage PWM control. Finally, the steady-state and dynamic operation of the control method is analyzed and verified by simulation and experimental results.

An Inverter for Blower by using PWM controller (PWM 제어기를 이용한 브로워용 인버터)

  • Ra, B.H.;Kim, J.S.;Kang, T.A.;Koh, K.H.;Lee, H.W.;Kim, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.181-183
    • /
    • 2004
  • Conventional VVVF control voltage-fed inverter of blower induction motor has advantage that very speedy response characteristics for air-harmonic. But there have bad power factor on input orient have its large volume and high error ratio over 80%. And there are very expensive by reason of using the capacitor input rectifier. In this paper, It could make the smoothing capacitor-less inverter for air-blower motor by using the instantaneous compensation PWM controller. This inverter system has small volume and value compare with the conventional VVVF control inverter for blower induction motor for air-harmonic equipment.

  • PDF

A Study on the Performance Enhancement of HVDC System Using Hybrid Filter and Energy Recovery Filter (11차/13차 고조파를 동시에 제거하는 Single Tuned 필터)

  • Kim C.K.;Yang B.M.;Jeong G.J.;Ahan J.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.717-721
    • /
    • 2003
  • Two non-conventional HVDC converter arrangements are compared. These include the Capacitor Commutated Converter (CCC) in which series capacitors are included between the converter transformer and the valves, and the Controller Series Capacitor Converter (CSCC), based on more conventional topology, in which series capacitors are inserted between the AC filter bus and the AC network. Results show that both options have comparable steady state and transient performance. Danger of ferroresonance with the CSCC option is eliminated by controlling the amount of series compensation. The dynamic performance simulations is peformed by PSCAD/EMTDC

  • PDF

Instantaneous Voltage Sag Corrector in Distribution Line Using Series Compensator (배전계통에서의 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • In this paper, a VSC(Voltage Sag Corrector) is discussed for the purpose of power quality enhancement. A fast detecting technique of voltage sag is accomplished through the detection of instantaneous value on synchronous reference frame. A robust characteristic against the noise is available by inserting the first order low pass filter in the detection circuit. The formula and the filter design process is described properly with the mathematical equations. Because the VSC system supply the active power to load, it is required to design the proper size of the energy storage system, In this paper, the capacitor bank is used as an energy storage system, and the size of the capacitor is designed from the point of view of input/output energy as the output power rating and the amplitude and duration time of the voltage sag. The simulation is accomplished by PSCAD/EMTDC.

  • PDF

Design and Implementation of a Laboratory Scale TCSC (모델급 TCSC의 설계 및 구현)

  • Dinh, Minh-Chau;Park, Sang-Min;Kim, Sung-Kyu;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.351-352
    • /
    • 2015
  • Thyristor-controlled series capacitor (TCSC) is a power electronic-based device that provides a fast and controllable series compensation of transmission line reactance. To match with laboratory facilities and for further research initiatives, a practical laboratory scale TCSC was designed and fabricated in this paper. The TCSC parameters were designed based on the terminologies such as percentage of compensation, boost factor and resonance factor. According to the design parameters, a prototype laboratory scale TCSC with a constant reactance controller was fabricated and tested. The measured results from the laboratory scale TCSC demonstrate the ability of the TCSC to provide rapid control of series reactance of a transmission line.

  • PDF

A study on series compensation capacitors to control subsynchronous resonance (SSR을 제어하기 위한 직렬 보상 캐패시터에 관한 연구)

  • Kim, Sung-Nam;Lee, Seung-Hwan;Lee, Hoon-Goo;Kim, Yong-Joo;Han, Kyung-Hee;Chung, Yon-Tack
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.434-436
    • /
    • 1995
  • This paper was to determine the feasibility of controlling subsynchronous resonance(SSR) by the fast modulation of series compensation capacitors. The presence of subsynchronous currents in the system was detected by a subsynchronous relay which was modeled by the transient analysis of control systems (TACS) in the electromagnetic transients program (EMTP). The capacitor segments were switched by bi-directional thyristor swtiches. The paper proved that effective control of SSR can be obtained only by the detuning of the system and the removal or blocking of subsynchronous energy from the system.

  • PDF