• Title/Summary/Keyword: Capacitor bank

Search Result 117, Processing Time 0.025 seconds

A New Volt/Var Control of Substation for Distribution Volt/Var Regulation (배전계통 전압/무효전력조정을 위한 새로운 전압/무효전력제어 방식)

  • Choi, Joon-Ho;Kim, Jae-Chul;Son, Hag-Sig;Im, Tae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.285-288
    • /
    • 2001
  • In this paper we proposed the on line volt/var control schemes of the load Tap Changer (LTC) transformer and shunt capacitor bank for distribution volt/var regulation. In the existing volt/var control of the distribution substation, the voltage of feeders and var of distribution systems is mainly controlled by the LTC transformer tap position and on/off status of the shunt capacitor. The LTC and shunt capacitor bank has discrete operation characteristics and therefore it is very difficult to control volt/var at the distribution networks within the satisfactory levels. Also there is limitation of the operation times of the LTC and shunt capacitor bank because it is affects on their functional lifetime. The proposed volt/var control algorithm determine an optimal tap position of LTC and on/off status of shunt capacitors at a distribution network with the multiple feeders. The mathematical equations of the proposed method are introduced. Simple case study was performed to verify the effectiveness of the proposed method.

  • PDF

The Coordinate Control Method of LTC Transformer and Capacitor Banks at Distribution Substation

  • Choi, Joon-Ho;Ahn, Seon-Ju;Nam, Hae-Kon;Kim, Jae-Chul;Moon, Seung-Il;Jung, Won-Wook;Song, Il-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.320-329
    • /
    • 2012
  • The Load Tap Changing (LTC) transformer and Shunt Capacitor (SC) bank are major devices for voltage and reactive power control in a distribution substation. Thus, the coordination operation of a LTC transformer and a SC bank is required to achieve better voltage and reactive power compensation at a distribution substation in the same time. This paper proposes coordinate control method of LTC transformer and SC bank to achieve better voltage and reactive power compensation and operation times of these two devices in the same time. The mathematical formulations of the proposed coordinate control method are introduced. Sample case studies are shown to verify the effectiveness of the proposed coordinate control method.

A Protection Algorithm of 23kV Shunt Capacitor Banks (23kV급 Capacitor Bank 보호 알고리즘)

  • Lim J.U;Kwon Y.J;Kang S.H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.443-445
    • /
    • 2004
  • 본 논문에서는 22.9kV급 Shunt Capacitor Bank 내부 고장으로 인한 불평형 요소를 검출하기 위하여 기존의 차동전압의 크기만을 이용한 보호 방식을 검토하고, 이 보호 방식에서 발생되는 여러 문제점들을 해결하기 위한 개선 방안을 제안한다. 기존의 차동전압의 크기를 이용한 보호 방식에서는 인입단 근처에서의 고저항 아크 고장이나 접지단 근처에서의 지락 고장 등에 의해 Capacitor 소자에 손상을 입을 수 있지만, 이에 대한 고장 판정이 용이하지 않다. 따라서 이를 해결하기 위하여 본 논문에서는 차동전압의 주파수 계전 방식 및 접지단 전압 등을 도입하였다. 특히, 주파수 계전 요소를 도입할 경우에 비선형 부하 둥으로부터 발생되는 고조파의 영향이 없다는 것을 입증하여 부하의 종류와는 무관하게 본 논문에서 제안한 방법이 적용될 수 있음을 보였다 본 논문에서 제안한 알고리즘은 사례 연구를 통하여 그 타당성이 입증되었다.

  • PDF

Design and Operational Characteristics of 150MW Pulse Power System for High Current Pulse Forming Network (대전류 펄스 성형이 가능한 150MW급 펄스파워 시스템의 설계 및 동작특성)

  • Hwang, Sun-Mook;Kwon, Hae-Ok;Kim, Jong-Seo;Kim, Kwang-Sik
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.217-223
    • /
    • 2012
  • This paper presents design and operational characteristics of 150 MW pulse power system for high current pulse forming network to control trigger time. The system is composed of two capacitor bank modules. Each capacitor bank module consist of a trigger vacuum switch, 9k 33kJ capacitor, an energy dump circuit, a crowbar circuit and a pulse shaping inductor and is connected in parallel. It is controlled by trigger controller to select operational module and determine triggering time. Pspice simulation was conducted about determining parameters of components such as crowbar circuit, capacitor, pulse forming inductor, trigger vacuum switch and predicting results of experiment circuit. The result of the experiment was in good agreement with the result of the simulation. The various current shapes with 300~650 us pulse width is formed by sequential firing time control of capacitor bank module. The maximum current is about 40 kA during simultaneous triggering of two capacitor bank modules. The developed 150 MW pulse power system can be applied to high current pulse power system such as rock fragmentation power sources, Rail gun, Coil gun, nano-powers, high power microwave.

Behavior Analysis of a Self Excited Induction Generator with Various Loads for a Hybrid Electric Propulsion System (하이브리드 전기추진시스템 구축을 위한 SEIG의 출력 특성 분석)

  • Yang, Joo-Ho;Choi, Gyo-Ho;Lee, Jae-Min;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.41-47
    • /
    • 2018
  • This paper analyzes the output characteristics of a self excited induction generator with isolated mode according to change of its speeds and loads for building a hybrid electric propulsion system in special purpose ships by using power take off. The induction generators are being considered as an alternative choice to the well-developed generators because of their lower unit cost, inherent ruggedness, operational and maintenance simplicity. However, the generator working by stand alone has a few problems that the reactive power is required to establish the air gap magnetic flux, and the induced voltage and magnetizing current fluctuate when the load is varied. In spite of its advantages, basic design data of the capacitor bank and behaviors of the output characteristics of the generator are not sufficient for the system. Based on the operating condition(speed range of main engine) of the target boat, a reduced experimental equipment system was constructed to analyze the output characteristics of the SEIG. And a suitable capacitor bank of a stand-alone generator and its output characteristics under various loads was investigated in detail through these experiments. According to the experimental result, it was confirmed that the capacitor bank should be $70{\mu}F{\sim}100{\mu}F$, and the proper SEIG induced voltage should be DC 80 V ~ 250 V in order to storage electrical energy into a battery.

A Study on the Power Factor Correction and Harmonics Reduction of Capacitor Banks installed at Customers (수용가에 설치된 캐패시터 뱅크의 역률개선 및 고조파 저감에 관한 연구)

  • Kim, Kyung-Chul;Choi, Hyoung-Bumb
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.12-17
    • /
    • 2008
  • Most power system loads and delivery apparatus are inductive in nature and therefore operate at a lagging power factor. Applying capacitor banks to a customer will result in a power factor correction and other benefits such as VAR support, increased voltage, reduced power losses, and reduced billing charges. Also there can be power quality problems as a result of adding capacitor banks. The most common are harmonics. This paper provides an in depth analysis on the power factor correction and harmonics reduction of capacitor bank installed at a customer. The EDSA program was used as a simulation tool for the case study.

Characteristics of Capacitor Bank Composed of Eight Paralleled Modules (300kJ${\times}$B 모듈로 구성된 커패시터 뱅크의 특성 분석)

  • Sung, G.Y.;Jung, J.W.;Choi, Y.H.;Kim, J.S.;Chu, J.H.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1600-1602
    • /
    • 2001
  • A pulsed power supply of 2.4MJ capacitor bank has been developed to make investigation into electric gun technology. It is made up of eight paralleled 300kJ modules, and can supply various shape of high current pulse by changing charging voltage, inductance, capacitance, and firing time of each module. The 300kJ module has been designed and fabricated for the maximum operating voltage of 22kV, peak current of 150kA, and pulse duration of 1msec. The experiments of the modules were done, and the equivalent circuit of the module was determined. The characteristics of the module were analyzed more deeply through the circuit simulation. The experiments of the paralleled modules with inductance of 20 $\mu$H and load resistance of 100 m$\Omega$ were performed, where the modules were discharged simultaneously and/or sequentially. The results of the experiments were analyzed. The 2.4MJ capacitor bank is currently used as the pulsed power supply for the ETCG (Electro Thermal Chemical Gun) research.

  • PDF

Study on the High Voltage Pulse Profile Characteristics of a Turbulently Heated Theta Pinch (난류가열 쎄타핀치의 고전압 펄스 발생에 관한 연구)

  • 강형보;정운관;육종철
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.11
    • /
    • pp.456-463
    • /
    • 1984
  • The fast-rising high-voltage pulse generation circuit system of a theta pinch is both theoretically and experimentally investigated. The idealized model of this circuit system is a hybrid circuit system composed of three parts: a lumped circuit part being consisted of a capacitor bank and a spark switch connected in series, another lumped circuit part being consisted of the Blumlein transmission line, whose end load is the pinch coil. the voltage difference between two ends of the pinch coil is formulated by analyzing this hybrid circuit system by means of the law of the signal propagation in the transmission line and Kirchhoff's laws. The expedient numerical method for computer calculation is developed to generate the pulse profile of the voltage difference across the pinch coil. The period of the experimentally measured main pulse is a fourth of the theoretical one neglecting the resistance of the pinch coil. We attribute this discrepancy to the modelling in the theoretical calculation that hte resistance and inductance of the spark switch and capacitor bank are assumed to be constant through discharge. Therefore, we can see that the rise time of the imploding magnetic-field pulse is mainly dependent on the spark switch and capacitor bank.

  • PDF

Arc Generation Facility with Auxiliary Current Source Using LC Resonance Circuit (보조 전류원 커패시터 뱅크를 가지는 LC공진회로를 이용한 아크발생 실험장치에 관한 연구)

  • Kang, J.S.;Park, H.T.;Lee, B.W.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1054-1056
    • /
    • 1999
  • It is necessary to install the arc generation facility to obtain the important technology for the design of breakers and switches, and the improvement of their performance and reliability. With this facility it is possible to study the characteristics of Arc in air/gas/vacuum insulation environment. The arc generation facility briefly consists of capacitor bank which can charge enormous energy, an air-core reactor, and several measurement equipments. This facility can simulates the arc phenomena in breakers and switches by means of generating high currents. In order to the protect electrode damage during the arcing time in arc extinguishing chamber, we installed auxiliary current source in addition to main capacitor bank, This auxiliary current source produces relatively small arc between electrodes before high current generation by main capacitor bank. Therefore it is possible to observe and measure the arcing phenomenon without damage of electrodes.

  • PDF

Evaluation of 300kJ Capacitor Bank Module for High Current Pulse Shaping (대전류 펄스 성형을 위한 300kJ급 커패시터뱅크 모듈의 특성 평가)

  • Hwang, Dong-Won;Lee, Hong-Sik;Jin, Yun-Sik;Cho, Chu-Hyun;Kim, Jong-Soo;Rim, Geun.Hee;Park, Won-Zoo;Kim, Jin-Sung;Jung, Jae-Won;Chu, Jeung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2086-2088
    • /
    • 2000
  • Key elements of in the development Electro-Thermal-Chemical propulsion (ETC) are high current pulse shaping, switching and storage bank device with high energy density 300kJ pulse power capacitor bank module for ETC application is designed and fabricated. The tested result are described.

  • PDF