• Title/Summary/Keyword: Capacitive-sensor

Search Result 329, Processing Time 0.037 seconds

Signal Processing of Capacitive Load and Gap Measurement with High Precision Using Surface Acoustic Wave Device (표면 탄성파 장치를 이용한 용량성 부하의 신호처리 및 이를 이용한 초정밀 간극 측정)

  • Kim, Jae-Geun;Lee, Taek-Joo;Lim, Soo-Cheol;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.376-380
    • /
    • 2009
  • Surface acoustic wave (SAW) device is widely used as a bandpass filter, a chemical or physical sensor, and an actuator. In this paper, we propose the capacitive gap measurement system with high precision through the signal processing using SAW device. The research process is mainly composed of theoretical part and experimental part. In theoretical part, equivalent circuit model was used to simulate the SAW response by the change of capacitance. In experimental part, commercialized capacitor was used to see the SAW response by the change of load capacitance. After that, gap adjustment system was made physically and the SAW response by the change of gap which caused the capacitance change was measured. And resolution and stroke was decided comparing the signal change and basic measurement noise level.

  • PDF

Study on Electro-Mechanical Characteristics of Array Type Capacitive Pressure Sensors with Stainless Steel Diaphragm and Substrate (스테인리스 강 박막 및 기판을 이용한 배열형 정전용량 압력센서의 전기 기계적 특성연구)

  • Lee, Heung-Shik;Chang, Sung-Pil;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1369-1375
    • /
    • 2006
  • In this work, mechanical characteristics of stainless steel diaphragm have been studied as a potential robust substrate and a diaphragm material for micromachined devices. Lamination process techniques combined with traditional micromachining processes have been adopted as suitable fabrication technologies. To illustrate these principles, capacitive pressure sensors based on a stainless steel diaphragm have been designed, fabricated and characterized. The fabrication process for stainless steel micromachined devices keeps the membrane and substrate being at the environment of 8.65MPa pressure and $175^{\circ}C$ for a half hour and then subsequently cooled to $25^{\circ}C$. Each sensor uses a stainless steel substrate, a laminated stainless steel film as a suspended movable plate and a fixed, surface micromachined back electrode of electroplated nickel. The finite element method is adopted to investigate residual stresses formed in the process. Besides, out-of-plane deflections are calculated under pressures on the diaphragm. The sensitivity of the device fabricated using these technologies is 9.03 ppm $kPa^{-1}$ with a net capacitance change of 0.14 pF over a range 0$\sim$180 kPa.

Implementation of Extended Kalman Filter for Real-Time Noncontact ECG Signal Acquisition in Android-Based Mobile Monitoring System

  • Rachim, Vega Pradana;Kang, Sung-Chul;Chung, Wan-Young;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Noncontact electrocardiogram (ECG) measurement using capacitive-coupled technique is a very reliable long-term noninvasive health-care remote monitoring system. It can be used continuously without interrupting the daily activities of the user and is one of the most promising developments in health-care technology. However, ECG signal is a very small electric signal. A robust system is needed to separate the clean ECG signal from noise in the measurement environment. Noise may come from many sources around the system, for example, bad contact between the sensor and body, common-mode electrical noise, movement artifacts, and triboelectric effect. Thus, in this paper, the extended Kalman filter (EKF) is applied to denoise a real-time ECG signal in capacitive-coupled sensors. The ECG signal becomes highly stable and noise-free by combining the common analog signal processing and the digital EKF in the processing step. Furthermore, to achieve ubiquitous monitoring, android-based application is developed to process the heart rate in a realtime ECG measurement.

Frequency Response Analysis of Electrostatic Microactuators (정전형 마이크로 엑츄에이터의 주파수 응답 특성 해석)

  • Min, Dong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1982-1984
    • /
    • 2002
  • The admittance of one-port electrostatic actuator are modeled using the steady-state sinusoidal response. Also the admittance of the differential type actuator is derived taking the practical conditions into consideration, although it has no admittance in ideal case. It is a function of biasing error, driving error, and capacitive mismatch including parasitic capacitors. The validity of the admittance model is proved by comparing between the modeled and measured admittances. The distortion in the frequency response curve measured by a capacitive sensor is analyzed and it is concluded that the admittance is the main cause of this distortion.

  • PDF

A Study on the Sensor for measuring the Very Fast Transients in GIS (GIS에 있어서 급준성 과도전압 측정용 센서에 관한 연구)

  • 백용현;안창환;전덕규;이복희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.47-51
    • /
    • 1990
  • This paper deals with the electric field sensor. A capacitive voltage sensor is designed and manufactured for measuring the very fast transients generated by operating disconnection switch in GIS. It is certified that the voltage sensor has a good specific characteristic in high frequency domain and is able to measure the very fast transients included the harmonic components of 200[MHz].

Development of Pressure Sensor for Identifying Guinea Pig's Large Intestinal Motility Caused by Drug (약물 투여에 따른 기니피그 대장 운동 측정을 위한 압력센서 개발)

  • Park, Jae-Soon;Park, Jung-Ho;Kim, Eung-Bo;Cho, Sung-Hwan;Jang, Su-Jeong;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • In this paper, in order to quantify the peristalsis occurrence in a guinea pig's large intestine, a miniaturized air-gap capacitive pressure sensor was fabricated through micro-electro-mechanical system (MEMS). The proposed pressure sensor is a two-layered biocompatible polyimide substrate consisting of an air-gap capacitive plates between the substrates. The proposed pressure sensor was designed with a careful consideration of the structure and motility mechanism of the guinea pig's large intestine. Artificial pellets were mounted on a prototype pressure sensor to provide some redundancies in the form of size and shape of the guinea pig feces. Capacitance of a prototype sensor was recorded to be 2.5 ~ 3 pF. This capacitance value was later converted to count value using a lab fabricated data conversion system. Sensitivity of the pressure sensor was recorded to be below 1 mmHg per atmospheric pressure. During in vivo testing, artificial peristalsis caused by drug injection was measured by inserting the prototype pressure sensor into the guinea pig's large intestine and pressure data obtained due to artificial peristalsis was graphed using a labview program. The proposed pressure sensor could measure the pressure changes in the proximal, medial, and distal parts of the large intestine. The results of the experiment confirmed that pressure changes of guinea pig's large intestine was proportional to the degree of drug injection.

Accuracy improvement of laser interferometer with neural network (신경회로망을 이용한 레이저 간섭계 정밀도 향상)

  • Lee, Woo-Ram;Heo, Gun-Hang;Hong, Min-Suk;Choi, In-Sung;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.597-599
    • /
    • 2006
  • In this paper, we propose an artificial intelligence method to compensate the nonlinearity error which occurs in the heterodyne laser interferometer. Some superior properties such as long measurement range, ultra-precise resolution and various system set-up lead the laser interferometer to be a practical displacement measurement apparatus in various industry and research area. In ultra-precise measurement such as nanometer or subnanometer scale, however, the accuracy is limited by the nonlinearity error caused by the optical parts. The feedforward neural network trained by back-propagation with a capacitive sensor as a reference signal minimizes the nonlinearity error and we demonstrate the effectiveness of our proppsed algorithm through some experimental results.

  • PDF

A study on Ultra Precision machining process for Aspheric (비구면 초정밀절삭 공정기술에 관한 연구)

  • 김건희;홍권희;김효식;김현배;양순철;윈종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.90-93
    • /
    • 2003
  • This paper described about the ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a circle leaf spring mechanism and a capacitive-type sensor. The, contact probe is attached on the z-axis during measurement while aspheric object are supported on the diamond turning machine(DTM). The machine xz-axis motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed of on-machine measurement system in this investigation is capable of providing a repeatability of 10 nanometers with a $\pm$20 uncertainty of 200nmPv.

  • PDF