• Title/Summary/Keyword: Capacitive WPT

Search Result 5, Processing Time 0.02 seconds

A Rotary Capacitive-Wireless Power Transfer System for Power Supply of a Wireless Sensor System on Marine Rotating Shaft (선박 회전축의 무선 센서 시스템의 전원 공급을 위한 회전식 정전용량-무선 전력 전송 시스템)

  • Van Ai Hoang;Young Chul Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • In this work, a capacitive wireless power transfer (C-WPT) system is presented for wireless sensor system (WSS) applications in marine propulsion shafts. For a single Q factor on both sides of the coupling capacitor and reactive power removal from the circuit, a double-sided LCLC converter and transformers topology are designed to drive the rotary C-WPT system for WSS on the shaft. Parallel-connected parallel plate rotating capacitors with a capacitance of 170 pF are designed and implemented for the C-WPT system on a snow rotating shaft. In the experimental results, the C-WPT system achieved a transmission efficiency of 66.67% with 7.8 W output power at 3 mm distance and 1 MHz operating frequency. Therefore, it was proved that the fabricated C-WPT system can supply power to the WSS of the rotating shaft.

Wireless Power Transfer via Magnetic Resonance Coupling (MRC) with Reduced Standby Power Consumption

  • Lee, Byoung-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.637-644
    • /
    • 2019
  • Wireless power transfer (WPT) technology with various transfer mechanisms such as inductive coupling, magnetic resonance and capacitive coupling is being widely researched. Until now, power transfer efficiency (PTE) and power transfer capability (PTC) have been the primary concerns for designing and developing WPT systems. Therefore, a lot of studies have been documented to improve PTE and PTC. However, power consumption in the standby mode, also defined as the no-load mode, has been rarely studied. Recently, since the number of WPT products has been gradually increasing, it is necessary to develop techniques for reducing the standby power consumption of WPT systems. This paper investigates the standby power consumption of commercial WPT products. Moreover, a standby power reduction technique for WPT systems via magnetic resonance coupling (MRC) with a parallel resonance type resonator is proposed. To achieve a further standby power reduction, the voltage control of an AC/DC travel adapter is also adopted. The operational principles and characteristics are described and verified with simulation and experimental results. The proposed method greatly reduces the standby power consumption of a WPT system via MRC from 2.03 W to 0.19 W.

Design Guidelines for a Capacitive Wireless Power Transfer System with Input/Output Matching Transformers

  • Choi, Sung-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1656-1663
    • /
    • 2016
  • A capacitive wireless power transfer (C-WPT) system uses an electric field to transmit power through a physical isolation barrier which forms a pair of ac link capacitors between the metal plates. However, the physical dimension and low dielectric constant of the interface medium severely limit the effective link capacitance to a level comparable to the main switch output capacitance of the transmitting circuit, which thus narrows the soft-switching range in the light load condition. Moreover, by fundamental limit analysis, it can be proved that such a low link capacitance increases operating frequency and capacitor voltage stress in the full load condition. In order to handle these problems, this paper investigates optimal design of double matching transformer networks for C-WPT. Using mathematical analysis with fundamental harmonic approximation, a design guideline is presented to avoid unnecessarily high frequency operation, to suppress the voltage stress on the link capacitors, and to achieve wide ZVS range even with low link capacitance. Simulation and hardware implementation are performed on a 5-W prototype system equipped with a 256-pF link capacitance and a 200-pF switch output capacitance. Results show that the proposed scheme ensures zero-voltage-switching from full load to 10% load, and the switching frequency and the link capacitor voltage stress are kept below 250 kHz and 452 V, respectively, in the full load condition.

Optimal Design of Volume Reduction for Capacitive-coupled Wireless Power Transfer System using Leakage-enhanced Transformer (누설집중형 변압기를 이용한 전계결합형 무선전력전송 시스템의 부피저감 최적설계 연구)

  • Choi, Hee-Su;Jeong, Chae-Ho;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.469-475
    • /
    • 2017
  • Using impedance matching techniques as a way to increase system power transferability in capacitive wireless power transmission has been widely investigated in conventional studies. However, these techniques tend to increase the circuit volume and thus counterbalance the advantage of the simplicity in the energy link structure. In this paper, a compact circuit topology with one leakage-enhanced transformer is proposed in order to minimize the circuit volume for the capacitive power transfer system. This topology achieves a reactive compensation, and the system quality factor value can be reduced by the turn ratio. As a result, this topology not only reduces the overall system volume but also minimizes the voltage stress of the link capacitor. An optimal design guideline for the leakage-enhanced transformer is also presented. The advantages of the proposed scheme over the conventional method in terms of power efficiency and circuit volume are revealed through an analytic comparison. The feasibility of applying the new topology is also verified by conducting 50 W hardware tests.

A Shared Channel Design for the Power and Signal Transfers of Electric-field Coupled Power Transfer Systems

  • Su, Yu-Gang;Zhou, Wei;Hu, Aiguo Patrick;Tang, Chun-Sen;Hua, Rong
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.805-814
    • /
    • 2016
  • Electric-field coupled power transfer (ECPT) systems have been proposed as an alternative wireless power transfer (WPT) technology in recent years. With the use of capacitive plates as a coupling structure, ECPT systems have many advantages such as design flexibility, reduced volume of the coupling structure and metal penetration ability. In addition, wireless communications are effective solutions to improve the safety and controllability of ECPT systems. This paper proposes a power and signal shared channel for electric-field coupled power transfer systems. The shared channel includes two similar electrical circuits with a band pass filter and a signal detection resistor in each. This is designed based on the traditional current-fed push-pull topology. An analysis of the mutual interference between the power and signal transmission, the channel power and signal attenuations, and the dynamic characteristic of the signal channel are conducted to determine the values for the electrical components of the proposed shared channel. Experimental results show that the designed channel can transfer over 100W of output power and data with a data rate from 300bps to 120 kbps.