• 제목/요약/키워드: Capacitive Reactive Power

검색결과 18건 처리시간 0.026초

무효전력 비용 산정에 관한 연구 (A Study on Cost Evaluation for Capacitive Reactive Power)

  • 정춘식;박정도;문영현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권3호
    • /
    • pp.182-186
    • /
    • 2004
  • In this paper, the cost for capacitive reactive flower is evaluated considering the deregulation environment. For the cost assessment of reactive power, the duration curve of reactive power demand is introduced and investigated. Also, a guideline is suggested to estimate the Q-cost by using the inverse of the Q-demand duration curve. In order to obtain optimal real reactive power allocation, a new algorithm is proposed by using the piecewise linearization of the inverse of the Q-demand duration curve and the Linear Programming technique. The proposed method is tested with sample systems using MATLAB. The test results show that the algorithm yields reasonable reactive power allocation and Provides fair cost evaluation for reactive power.

Improved Reactive Power Sharing and Harmonic Voltage Compensation in Islanded Microgrids Using Resistive-Capacitive Virtual Impedance

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1575-1581
    • /
    • 2019
  • Due to the mismatched line impedance among distributed generation units (DGs) and uncontrolled harmonic current, the droop controller has a number of problems such as inaccurate reactive power sharing and voltage distortion at the point of common coupling (PCC). To solve these problems, this paper proposes a resistive-capacitive virtual impedance control method. The proposed control method modifies the DG output impedance at the fundamental and harmonic frequencies to compensate the mismatched line impedance among DGs and to regulate the harmonic current. Finally, reactive power sharing is accurately achieved, and the PCC voltage distortion is compensated. In addition, adaptively controlling the virtual impedance guarantees compensation performance in spite of load changes. The effectiveness of the proposed control method was verified by experimental results.

Automatic Power Factor Correction Using a Harmonic-Suppressed TCR Equipped with a New Adaptive Current Controller

  • Obais, Abdulkareem Mokif;Pasupuleti, Jagadeesh
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.742-753
    • /
    • 2014
  • In this paper, a new continuously and linearly controlled capacitive static VAR compensator is proposed for the automatic power factor correction of inductive single phase loads in 220V 50Hz power system networks. The compensator is constructed of a harmonic-suppressed TCR equipped with a new adaptive current controller. The harmonic-suppressed TCR is a new configuration that includes a thyristor controlled reactor (TCR) shunted by a passive third harmonic filter. In addition, the parallel configuration is connected to an AC source via a series first harmonic filter. The harmonic-suppressed TCR is designed so that negligible harmonic current components are injected into the AC source. The compensator is equipped with a new adaptive closed loop current controller, which responds linearly to reactive current demands. The no load operating losses of this compensator are negligible when compared to its capacitive reactive current rating. The proposed system is validated on PSpice which is very close in terms of performance to real hardware.

누설집중형 변압기를 이용한 전계결합형 무선전력전송 시스템의 부피저감 최적설계 연구 (Optimal Design of Volume Reduction for Capacitive-coupled Wireless Power Transfer System using Leakage-enhanced Transformer)

  • 최희수;정채호;최성진
    • 전력전자학회논문지
    • /
    • 제22권6호
    • /
    • pp.469-475
    • /
    • 2017
  • Using impedance matching techniques as a way to increase system power transferability in capacitive wireless power transmission has been widely investigated in conventional studies. However, these techniques tend to increase the circuit volume and thus counterbalance the advantage of the simplicity in the energy link structure. In this paper, a compact circuit topology with one leakage-enhanced transformer is proposed in order to minimize the circuit volume for the capacitive power transfer system. This topology achieves a reactive compensation, and the system quality factor value can be reduced by the turn ratio. As a result, this topology not only reduces the overall system volume but also minimizes the voltage stress of the link capacitor. An optimal design guideline for the leakage-enhanced transformer is also presented. The advantages of the proposed scheme over the conventional method in terms of power efficiency and circuit volume are revealed through an analytic comparison. The feasibility of applying the new topology is also verified by conducting 50 W hardware tests.

OPERATION MODES ANALYSIS FOR A DVR IN DISTRIBUTION GRIDS

  • Kim, Hyo-Sung;Kim, Pederson John
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.480-483
    • /
    • 2001
  • Recent power quality measurement projects report that voltage sags are the most frequent disturbances in the sites [1]-[4]. DVRs were emerged as the best effective and economic solution for this problem [11]. This paper analyzed the power flow of a DVR in distribution grids. This paper showed various operation modes and boundaries such as inductive operation, capacitive operation, and minimal power operation beside the in-phase compensation.

  • PDF

Analysis of Voltage Regulation by DSTATCOM - Using the EMTDC Program

  • Jeon Young-Soo;Kwak No-Hong;Choo Jin-Boo
    • Journal of Power Electronics
    • /
    • 제5권4호
    • /
    • pp.329-334
    • /
    • 2005
  • The DSTATCOM(Distribution Static Synchronous Compensator) is one of the Custom Power Devices that can regulate voltage. The DSTATCOM operates as a shunt connected static var compensator whose capacitive or inductive output current can be controlled independent of the system voltage. The magnitude of the compensated voltage is limited by characteristics of the system and the load. Compensation capability of the DSTATCOM which can inject 1 MVAR reactive power was simulated by EMTDC under several conditions. This paper analyzes the effect of the DSTATCOM's compensation considering the length and kind of distribution line, the power factor and magnitude of the load, and the duration and magnitude of the voltage variation.

플라즈마 디스플레이 채널을 위한 단일 소프트-스위칭 다단계 에너지 회수 회로 드라이버 (Single Soft-Switching Multi-Level Energy Recovery Circuit Driver for Plasma Display Panel)

  • 하꼬보 아기용;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.413-416
    • /
    • 2006
  • The power source of an AC-PDP fur sustainer circuit is operated in high-voltage and high frequency switching during the process required to achieve the gas discharge current to generate light in a PDP panel. Since PDP has the characteristics of a pure capacitive load, the displacement current that occurs during charge and discharge generates considerable reactive power. An auxiliary circuitry called Energy Recovery Circuit (ERC) reduces the capacitive displacement current. However, this auxiliary topology also bears high stress in its components. In this paper, a multilevel voltage wave shaping sustainer circuit with auxiliary ERC characteristics for an AC-PDP driver is proposed. A comparative analysis and experimental results are presented.

  • PDF

시송전 계통에서 자기여자 현상의 새로운 해석 알고리즘 개발 (Development of New Algorithm for the Analysis of Self-Excitation in Primary Restorative Transmission Systems)

  • 박성민;이경섭;배주천;황봉환;송인준;이남호;이흥재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권3호
    • /
    • pp.117-121
    • /
    • 2005
  • Power system restoration following a massive blackout starts with re-energizing primary transmission lines at first. Some factors such as Ferranti effect, and line charging reactive power should be considered in this stage. Severe overvoltage may be induced by the Ferranti effect at the lines since it would be usually no load condition. And lack of capacitive reactive power will cause the self-excitation. This paper presents a new precise algorithm to analyze the primary restorative transmission system focused on the two major static overvoltage problems during the early restoration process.

Three-Phase Current Balancing Strategy with Distributed Static Series Compensators

  • Yoon, Hanjong;Yoon, Dongkwan;Choi, Dongmin;Cho, Younghoon
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.803-814
    • /
    • 2019
  • This paper proposes a three-phase current balancing strategy in a power transmission system employing distributed static series compensators (DSSCs). With the proposed variable quadrature voltage injection method, the DSSC emulates either an inductive or a capacitive impedance into the transmission line, and the magnitudes of the phase currents are balanced. Hence, the phase imbalances in the power transmission system are significantly reduced. As a result, the power transfer capability of the transmission lines can be improved. The operational principle of the DSSCs, the hardware structure and the control algorithm are described in detail. Finally, the theoretical analyses and the proposed strategy are experimentally verified through a scaled down transmission system with DSSC prototypes.

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.