• 제목/요약/키워드: Capacitance discharge spark

검색결과 6건 처리시간 0.021초

다회수 스파크 점화기관의 방전효과에 관한 연구 (A study on the effect of discharge in a multiple spark ignition engine)

  • 이성열;한병호
    • 오토저널
    • /
    • 제11권5호
    • /
    • pp.55-64
    • /
    • 1989
  • The effect of discharge have been investigated for condition of spark in a multiple spark ignition engine, as the spark duration, capacitive and inductive discharge energy were calculated for condition of spark by ignition wave and energy formula. The useful portion of spark discharge is divided into capacitance portion and inductance portion. It was found that capacitive discharge energy and spark duration were increased according to increasing number of spark, and inductive discharge energy was increased according to increasing spark interval. Therefore engine torque was increase and lean misfire limit was extended comparing with the standard ignition system. It found that spark energy was discharged within ignition delay period availability acted on the formation and growth of flame kernel, and total spark energy was increased according to increasing number of spark times, but discharged spark energy after ignition delay became unavailable energy. And the capacitive discharge energy has the dominant effect for stoichiomeric or not very rich air-fuel mixture but inductive discharge energy has the dominant effect for lean air-fuel mixture.

  • PDF

공기 분위기에서 스파크 방전을 이용한 은 나노입자 생성 (Generation of Silver Nanoparticles by Spark Discharge Aerosol Generator Using Air as a Carrier Gas)

  • 오현철;정재희;박형호;지준호;김상수
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.170-176
    • /
    • 2006
  • A spark discharge aerosol generator using air as a carrier gas has successfully been applied to silver nanoparticle production. The spark discharge between two silver electrodes, which was periodically obtained by discharging the capacitor, produced sufficient high temperatures to evaporate a small fraction of the silver electrodes. The silver vapor was subsequently supersaturated by rapid cooling and condensed to silver nanoparticles by nucleation and condensation. The morphology of the generated particles observed by transmission electron microscope was spherical. The element composition of the nanoparticles was silver, which was determined by energy dispersive X-ray spectroscopy. The crystal phase of the particles spark-generated under air atmosphere was composed of silver and silver oxides phase, which was determined by Xray diffraction analysis. While the nanoparticles generated under nitrogen atmosphere had only silver phase. This XRD data indicates that some fraction of the evaporated silver vapor could be oxidized in air atmosphere by the reaction with oxygen. A stable operation of the spark discharge generator has been achieved. The size and concentration of the particles can be easily controlled by altering the repetition frequency, capacitance, gap distance and flow rate of the spark discharge system.

Influence of Discharge Conditions on the Ignitability of Lycopodium Streams Due to a Single Capacitance Discharge Spark

  • Park, K. S.;M. Yamaguma;T. Kodama;J. H. Joung;Kim, T. Y.;M. Nifuku;M. Takeuchi
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권3호
    • /
    • pp.99-105
    • /
    • 2003
  • The influence of discharge conditions, including the resistance of the sparking circuit, the shape of the electrodes and the width of the falling dust on the ignitability of lycopodium streams were investigated. Discharge characteristics and the ignition phenomena were also explored. When a 100 ㏀ resistor was connected in series with the sparking circuit, the lowest level of minimum ignition energy (MIE) was attained for lycopodium streams. Simultaneously, the area where flammable gas generated increased and the duration of flammable gas generation decreased. That is, the ignita-bility of lycopodium streams depended strongly on the discharge power and discharge duration. Electrodes with sharp tips gave smaller MIEs than those with round tips in a capacitive-inductive sparking circuit, while shape made no difference in a capacitive-resistive circuit. Streams that were too narrow required a considerable amount of energy for ignition.

고전압 구형파 펄스 발생기에 관한 연구 (A study on High Voltage Squarewave Pulse Generator)

  • 김영배;유홍제;김종수
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.1022-1025
    • /
    • 2008
  • This paper presents the generation of the high voltage squarewave pulse using distributed RLC circuit. The demonstrated test was performed with the distributed RLC circuit which consists of the resistance, the inductance and the capacitance. Pspice simulation was also conducted about the experiment circuit. The result of the experiment was in good agreement with the result of the simulation. Theoretical analysis of the initial peak value at the squraewave pulse was derived from the results of the experiment and simulation. Additionally, the characteristics of the time delay was analyzed about the spherical gap switch and the surface discharge gap switch, respectively. It is concluded that the surface discharge gap switch is better than the spherical gap switch to reduce the time delay.

WEDG 방법을 이용한 마이크로 구조물 가공용 미세공구 제작 (Fabrication of Micro Tool Electrode for Machining Micro Structures using Wire Electrical Discharge Grinding(WEDG))

  • 박성준;안현민;이교승
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.13-20
    • /
    • 2005
  • Micro EDM process is generally used for machining microholes, cavities, and three dimensional shapes. For machining micro structures, first of all, micro tool electrode is indispensable and WEDG system is proposed for tool fabrication method. When using WEDG, its machining characteristics are highly affected by many EDM parameters such as applied voltage, current, rotation speed, capacitance, and pulse duration. Therefore, the design of experiment is introduced to fully understand the effect of the EDM parameters on machining tool electrode. And an attempt has been made to develop the mathematical model for predicting the size of the tool electrode by calculating spark distance. The suggested model was verified with experiment and predicted working gap distance is in good accord with the measured value.

Characteristics of Insulation Diagnosis and Failure in Gas Turbine Generator Stator Windings

  • Kim, Hee-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.280-285
    • /
    • 2014
  • In order to evaluate the insulation deterioration in the stator windings of five gas turbine generators(137 MVA, 13.8 kV) which has been operated for more than 13 years, diagnostic test and AC dielectric breakdown test were performed at phases A, B and C. These tests included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B and C) of No. 1 generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable and bad level to the insulation condition. Overall analysis of the results suggested that the generator stator windings were indicated serious insulation deterioration and patterns of the PD in all three phases were analyzed to be internal, slot and spark discharges. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. The breakdown voltage at phases A, B and C of No. 1 generator stator windings failed at 28.0 kV, 17.9 kV, and 21.3 kV, respectively. The breakdown voltage was lower than that expected for good-quality windings (28.6 kV) in a 13.8kV class generator. In the AC dielectric breakdown and diagnostic tests, there was a strong correlation between the breakdown voltage and the voltage at which charging current increases abruptly ($P_{i1}$, $P_{i2}$).