• Title/Summary/Keyword: Canopy height

Search Result 173, Processing Time 0.023 seconds

Vegetation Structure of Hovenia dulcis Community in South Korea

  • Yun, Chung-Weon;Lee, Byung-Chun
    • The Korean Journal of Ecology
    • /
    • v.25 no.1
    • /
    • pp.33-39
    • /
    • 2002
  • Objectives of this study are to make clear the vegetation structure of Hovenia dulcis community in the Korean Peninsula over ten mountains including 17 plots. The results were summarized as follows. Habitat of the community indicated that elevation ranged from 115 meter to 720 meter at the sea level, slope aspect in nearly all directions, bare rock from 0 to 90 percent, slope degree from 10$^{\circ}$ to 40$^{\circ}$, topography from valley to middle slope, the height of tree layer from 8m to 22m, the diameter at breast height from 12cm to 59cm and coverage from 65% to 95$\%$$\%$

Canopy-Related Characteristics of Korean Soybean Cultivars (한국 콩 품종의 초형관련 형질의 특성)

  • Kim, Hong-Sig;Lee, Ku-Hwan;Song, Hang-Lin;Kim, Seong-Jin;Hur, Gun;Woo, Sun-Hee;Jong, Seung-Keun
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.143-152
    • /
    • 2008
  • This study was conducted to obtain basic information on mainstem, branch and leaf characteristics related to canopy for development of high yielding cultivar using 70 Korean soybean cultivars developed from 1913 to 2000. Variations of canopy width, branch length, and canopy width/length ratio were higher compared to other characteristics among 12 mainstem and branch characters. Variations of petiole angle, leaflet width/length ratio and compound leaf dry weight were higher than other characteristics among eight leaf characters related to plant canopy. Three classifications of soybean cultivars were used based on usage: I)soy sauce and tofu, II)bean sprout, and III)cooking with rice. Canopy width/length ratio was higher in group III, cooking with rice than group I, soy sauce and tofu, and group II, bean sprout, and there was no difference between the two, group I and group II. The total branch length/main stem height ratio was higher in group II, bean sprout and group III, cooking with rice than group I, soy sauce and tofu. Mainstem and branch characteristics related to plant canopy were classified into four groups by ratio of canopy width/length and total branch length/main stem length, respectively. Soybean cultivars with narrow canopy and high dependence of mainstem were Danweonkong, Keumkangkong, Shelby, and Shinpaldalkong. Soybean cultivars with broad canopy and high dependence of mainstem were Kanglim, Keumkangdaelip, and Jinyulkong, and a cultivar with broad canopy and high dependence of branch were Geomjeongkong 2. Leaflet length/width ratio was lowest in cooking with rice and there was no difference between soy sauce and tofu and bean sprout. Compound leaf area was largest in cooking with rice and smallest in bean sprout. Leaf petiole length was short in bean sprout and there was no difference between soy sauce and tofu and bean sprout. Leaf petiole angle was highest in cooking with rice and lowest in bean sprout. Leaf type was classified into four groups based on leaflet width/length ratio and compound leaf area, respectivly. Buseok and Taekwangkong had an oval leaflet and largest area of compound leaf. Eunhakong and Sohokong had extreme narrow leaflet and smallest area of compound leaf. Leaf petiole type was classified into three and four groups based on leaf petiole length and angle, respectively. A soybean cultivar with the shortest petiole length and smallest petiole angle was Eunhakong and cultivars with short petiole length and large petiole angle were Alchankong, Muhankong, and Pureunkong. A soybean cultivar with long petiole length and small petiole angle was Sinpaldalkong 2. Among a total of 70 Korean soybean cultivars, Eunhakong had an extreme narrow type in leaf, smallest compound leaf area, shortest petiole length, and smallest petiole angle of compound leaf.

Effect of Canopy Covering on Thermal Insulation and Freezing Tolerence of 'Shiranui' Hybrid Mandarin Cultivated in Field During Winter Season (수관 피복이 노지재배 '부지화' 감귤나무의 보온과 내한성에 미치는 영향)

  • Joa, Jae-Ho;Kang, Seok-Beom;Moon, Young-Eel;Lee, Hae-Jin
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.441-447
    • /
    • 2021
  • It were investigated changes in internal and external temperature, relative humidity using tyvek, weedstop, and 35% shading net as covering material to reduce the freezing damage of 'Shiranui' hybrid mandarin grown in open field. It were also evaluated canopy covering effect and LT50 of leaves by covering material when it was cold at -2℃. In tyvek, temperature difference between inside and outside was low at the height of 1.5m and was high at 0.4m. The relative humidity differed greatly between day and night, and was high at 6-8 a.m. At -2℃, Sum of temperature at the height of 1.5m of canopy for 24-hour after covering were at 3.4℃ higher in tyvek than in control. The LT50 of leaves was at 1.51℃ in tyvek, 1.33℃ in withstop, and 1.61℃ in 35% shading net lower than in control. Considering thermal insulation and relative humidity in canopy, tyvek is expected to reduce low temperature damage when covering after making a fine hole for ventilation.

Effect of Red Pepper Canopy Coverages on Soil Loss and Runoff from Sloped Land with Different Transplanting Dates (경사지에서 고추 정식시기에 따른 토양유실과 유출수에 대한 식생피복 효과)

  • Cho, H.R.;Ha, S.K.;Hyun, S.H.;Hur, S.O.;Han, K.H.;Hong, S.Y.;Jeon, S.H.;Kim, E.J.;Lee, D.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.260-267
    • /
    • 2010
  • As sloped farmland is subject to runoff and soil erosion and consequently require appropriate vegetative coverage to conserve soil and water, a field study was carried out to evaluate the impact of crop canopy coverage on soil loss and runoff from the experimental plot with three different textural types (clay loam, loam, and sandy loam). The runoff and soil loss were examined at lysimeters with 15% slope, 5 m in length, and 2 m in width for five months from May to September 2009 in Suwon ($37^{\circ}$ 16' 42.67" N, $126^{\circ}$ 59' 0.11" E). Red pepper (Capsicum annum L. cv. Daechon) seedlings were transplanted on three different dates, May 4 (RP1), 15 (RP2), and 25 (RP3) to check vegetation coverage. During the experimental period, the vegetation coverage and plant height were measured at 7 day-intervals and then the 'canopy cover subfactor' (an inverse of vegetation cover) was subsequently calculated. After each rainfall ceased, the amounts of soil loss and runoff were measured from each plot. Under rainfall events >100 mm, both soil loss and runoff ratio increased with increasing canopy cover subfactor ($R^2$=0.35, p<0.01, $R^2$=0.09, p<0.1), indicating that as vegetation cover increases, the amount of soil loss and runoff reduces. However, the soil loss and runoff were depending on the soil texture and rainfall intensity (i. e., $EI_{30}$). The red pepper canopy cover subfactor was more highly correlated with soil loss in clay loam ($R^2$=0.83, p<0.001) than in sandy loam ($R^2$=0.48, p<0.05) and loam ($R^2$=0.43, p<0.1) plots. However, the runoff ratio was effectively mitigated by the canopy coverage under the rainfall only with $EI_{30}$<1000 MJ mm $ha^{-1}hr^{-1}$ ($R^2$=0.34, p<0.05). Therefore, this result suggested that soil loss from the red pepper field could be reduced by adjusting seedling transplanting dates, but it was also affected by the various soil textures and $EI_{30}$.

Growth Characteristics and Physiological Adaptation of Pinus densiflora Seedling in the Canopy Gap (소나무 묘목(苗木)의 Gap내 생장(生長) 및 생리적(生理的) 적응과정(適應過程))

  • Jin, Yonghuan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.452-460
    • /
    • 2000
  • This study was to investigate the growth characteristics, physiological adaptation of Pinus densiflora(Japanese Red Pine) seedlings at the artificial canopy gap in the Quercus acutissima plantation and to analyze its natural regeneration mechanism. Photosynthetic and transpiration rates were analyzed by different levels of photosynthetically active radiation and by seedling growth. Comparing to seedlings at the open area, those at the canopy gap showed more growth in height than in diameter with different levels of light quality and low light intensity, and the increase rate of dry weight was higher in the aboveground than in the underground, maintaining relatively high T/R rate. The C/F(the ratio of non-photosynthetic organs to photosynthetic organs in dry weight) of the aboveground at the canopy gap was higher than that at the open area by 0.1~0.2, while light saturation and light compensation points at the canopy gap were lower than that at the open area by $300{\mu}mol\;m^{-2}s^{-1}$ and 40%, respectively. The seedlings appeared to have shade tolerance to a certain extent at the young growth stage despite Pinus densiflora is typically classified shade-intolerant species. With light intensity lower than $400{\sim}450{\mu}mol\;m^{-2}s^{-1}$, photosynthetic rate and water use efficiency relatively increased by effective use of light energy.

  • PDF

Actions to Expand the Use of Geospatial Data and Satellite Imagery for Improved Estimation of Carbon Sinks in the LULUCF Sector

  • Ji-Ae Jung;Yoonrang Cho;Sunmin Lee;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.203-217
    • /
    • 2024
  • The Land Use, Land-Use Change and Forestry (LULUCF) sector of the National Greenhouse Gas Inventory is crucial for obtaining data on carbon sinks, necessitating accurate estimations. This study analyzes cases of countries applying the LULUCF sector at the Tier 3 level to propose enhanced methodologies for carbon sink estimation. In nations like Japan and Western Europe, satellite spatial information such as SPOT, Landsat, and Light Detection and Ranging (LiDAR)is used alongside national statistical data to estimate LULUCF. However, in Korea, the lack of land use change data and the absence of integrated management by category, measurement is predominantly conducted at the Tier 1 level, except for certain forest areas. In this study, Space-borne LiDAR Global Ecosystem Dynamics Investigation (GEDI) was used to calculate forest canopy heights based on Relative Height 100 (RH100) in the cities of Icheon, Gwangju, and Yeoju in Gyeonggi Province, Korea. These canopy heights were compared with the 1:5,000 scale forest maps used for the National Inventory Report in Korea. The GEDI data showed a maximum canopy height of 29.44 meters (m) in Gwangju, contrasting with the forest type maps that reported heights up to 34 m in Gwangju and parts of Icheon, and a minimum of 2 m in Icheon. Additionally, this study utilized Ordinary Least Squares(OLS)regression analysis to compare GEDI RH100 data with forest stand heights at the eup-myeon-dong level using ArcGIS, revealing Standard Deviations (SDs)ranging from -1.4 to 2.5, indicating significant regional variability. Areas where forest stand heights were higher than GEDI measurements showed greater variability, whereas locations with lower tree heights from forest type maps demonstrated lower SDs. The discrepancies between GEDI and actual measurements suggest the potential for improving height estimations through the application of high-resolution remote sensing techniques. To enhance future assessments of forest biomass and carbon storage at the Tier 3 level, high-resolution, reliable data are essential. These findings underscore the urgent need for integrating high-resolution, spatially explicit LiDAR data to enhance the accuracy of carbon sink calculations in Korea.

Modeling Knot Properties for Mongolian Pine in Northeast China

  • Jia, Weiwei;Li, Fengri;Jiang, Lichun
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.485-491
    • /
    • 2008
  • This study was performed in 14 unthinned Mongolian pine (Pinus sylvestris L. var. mongolica Litvin) plantations in northeast China. Data were collected on 70 sample trees of different canopy position with diameter at breast height (DBH) ranging from 6.9 cm to 34.5 cm. Diameter and length of knots per whorl below the living crown were studied by different vertical levels divided by relative knot height (RHK) in this paper. Models taking DBH and height to the crown base (HCB) as independent variables were developed to predict knot diameter (KD) in a sample whorl. According to the vertical distribution tendency and range of sound knot length (KLsound), KLsound was modeled as multiple linear function of DBH, KD and relative knot height (RHK). The loose knot length (KLloose) was described as a function of DBH, KD and height above the ground for knots (HK) in a mixed log-linear model. Results from this study can provide abundant knot information so as to describe the knot size and vertical distribution tendency of Mongolian pine plantation.

The Characteristics and Biomass Distribution in Crown of Larix olgensis in Northeastern China

  • Chen, Dongsheng;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.204-212
    • /
    • 2010
  • This study was performed in 22 unthinned Larix olgensis plantations in northeast China. Data were collected on 95 sample trees of different canopy positions and the diameter at breast height ($d_{1.3}$) ranged from 5.7 cm to 40.2 cm. The individual tree models for the prediction of vertical distribution of live crown, branch and needle biomass were built. Our study showed that the crown, branch and needle biomass distributions were most in the location of 60% crown length. These results were also parallel to previous crown studies. The cumulative relative biomass of live crown, branch and needle were fitted by the sigmoid shape curve and the fitting results were quite well. Meanwhile, we developed the crown ratio and width models. Tree height was the most important predictor for crown ratio model. A negative competition factor, ccf and bas which reflected the effect of suppression on a tree, reduced the crown ratio estimates. The height-diameter ratio was a significant predictor. The higher the height-diameter ratio, the higher crown ratio is. Diameter at breast height is the strongest predictor in crown width model. The models can be used for the planning of harvesting operations, for the selection of feasible harvesting methods, and for the estimation of nutrient removals of different harvesting practices.

Utilization of $CO_2$ Influenced by Windbreak in an Elevated Production System for Strawberry (딸기 고설재배시설에서의 이산화탄소 농도 유지를 위한 방풍막 설치 효과)

  • Kim, Y.-H.;Lee, I.-B.;Chun, Chang-Hoo;Hwang, H.-S.;Hong, S.-W.;Seo, I.-H.;Yoo, J.-I.;Bitog, Jessie P.;Kwon, K.-S.
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • The influence of windbreak to minimize the ventilation velocity near the plant canopy of a greenhouse strawberry was thoroughly investigated using computational fluid dynamics (CFD) technology. Windbreaks were constructed surrounding the plant canopy to control ventilation and maintain the concentration of the supplied $CO_2$ from the soil surface close to the strawberry plants. The influence of no windbreak, 0.15 m and 0.30 m height windbreaks with varied air velocity of 0.5, 1.0 and 1.5 m/s were simulated in the study. The concentrations of supplied $CO_2$ within the plant canopy of were measured. To simplify the model, plants were not included in the final model. Considering 1.0m/s wind velocity which is the normal wind velocity of greenhouses, the concentrations of $CO_2$ were approximately 420, 580 and 653 ppm ($1{\times}10^{-9}kg/m^3$) for no windbreak, 0.15 and 0.30 m windbreak height, respectively. Considering that the maximum concentration of $CO_2$ for the strawberry plants was around 600-800 ppm, the 0.30 m windbreak height is highly recommended. This study revealed that the windbreak was very effective in preserving $CO_2$ gas within the plant canopy. More so, the study also proved that the CFD technique can be used to determine the concentration of $CO_2$ within the plant canopy for the plants consumption at any designed condition. For an in-depth application of this study, the plants as well as the different conditions for $CO_2$ utilization, etc. should be considered.

The Effect of Building Morphology on Sea Breeze Penetration over the Kanto Plain - Analysis of Mean Kinetic Energy Balance of Moving Control Volume along Sea Breeze -

  • Sato, Taiki;Ooka, Ryozo;Murakami, Shuzo
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.73-80
    • /
    • 2012
  • In order to use sea breezes to counter the heat island phenomena, i.e. to promote urban ventilation, it is necessary to clarify the effect of building morphology and height on large-scale wind fields. In this study, the sea breeze in the vicinity of the Kanto Plain in Japan is simulated using a mesoscale meteorological model incorporating an urban canopy model, and the inland penetration of sea breezes is accurately reproduced. Additionally, a mean kinetic energy balance within a domain (Control Volume; CV) moving along the sea breeze is analysed. From the results, it is clarified that the sea breeze is interrupted by the resistance and turbulence caused by buildings at the centre of Tokyo. The interruption effect is increased in accordance with the height of these buildings. On the other hand, adverse pressure gradients interrupt in the internal region.