• Title/Summary/Keyword: Canopy height

Search Result 173, Processing Time 0.03 seconds

Early Responses of Planted Quercus serrata Seedlings and Understory Vegetation to Artificial Gap Treatments in Black Locust Plantation (아까시나무림에서 인공 숲틈 처리에 대한 졸참나무 식재목 및 하층식생의 초기 반응)

  • Cho, Yong-Chan;Kim, Jun-Soo;Lee, Jung-Hyo;Lee, Heon-Ho;Ma, Ho-Seob;Lee, Chang-Seok;Cho, Hyun-Je;Bae, Kwan-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.94-105
    • /
    • 2009
  • Black locust (Robinia pseudoacacia) stand is representative lowland exotic plantation with low ecological quality and arrested succession in South Korea. To facilitate succession and restore natural vegetation, small canopy gaps (${\sim}57m^2$), which can modify minimally structural variables and reduce restoration related disturbances on stand, was established in the black locust stand, and oak (Quercus serrata) seedlings were introduced in the gap. Two types of varying levels were introduced for gap creation; cutting (C) and girdling (G) on canopies. Understory removal (CU and GU) treatment was applied as subtypes of structural modification. Growth (diameter, height and leaf area) of target species and responses (species composition, diversity and coverage) of understory community were monitored during study years (2007~2008). Canopy openness was different significantly among treatments but not for light availability. Based on the result of logistic regression, growth of height and leaf area of seedlings were significant variables on seedling survival. Height and leaf area of seedlings were increased during study years, although radial growth was reduced. During study years, there were no significant differences in species composition and diversity, and total coverage increased about 20%. Increase of resources by gap creation and understory removal likely affect growth of target species. Small gap creation was effective to reduce understory responses in composition and diverstiy. Synthesized, growth of target species and responses of understory community to small canopy gap creation exhibited, in short term, possibility of utilization in alternative forest restoration and management option. Long-term monitoring is necessary to certificate effect of artificial gap creation on forest restoration.

Effect of Alternative Row Pinching on Growth and Yield in Soybean (열간 교호 적심이 콩의 생육 및 수량에 미치는 영향)

  • Kim Ik Je;Son Seok Yong;Nam Sang Young;Ryu In Mo;Kim Tae Jung;Lee Cheol Hee;Kim Tae Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.457-462
    • /
    • 2004
  • Lodging is one of the most serious problems in soybean cultivation. Therefore, improved cultural methods to reduce lodging as well as to increase photosynthetic ability should be mostly desirable to increase soybean production. The test variety was 'Hwangkeumkong' which was pinched at V7 stage. The greatest difference in canopy height between rows was shown when every other row was pinched, which also recorded the most effective reduction in lodging. The 9th leaf of soybean plants in non-pinching rows of alternative non-pinching and pinching plot showed the highest photosynthetic ability due to the greatest difference in canopy height. Although leaf area index was higher in pinched rows in average after 17 August, alternative pinching of every other row recorded the highest LAI on 5 September. Alternative pinching of every other row resulted $2\~14\%$ higher yield than non-pinching or complete pinching due to the increases of number of grains in the upper part of main stem and average grain weight of non-pinching rows and in alternative pinching.

Stand Structure and Seedling Recruitment of Abies holophylla Stands in Yong-In Area, Gyeonggi (경기도 용인 지역 전나무 임분의 구조 및 천연 갱신)

  • Park, Pil-Sun;Jeon, Yoon-Goo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.153-162
    • /
    • 2010
  • Abies holophylla Maxim. is a shade tolerant species that has potential to be used for continuous cover forestry system. Stand structure and natural regeneration of A. holophylla stands in Yong-In area located in the central part of Korea was investigated to estimate the self sustainability of A. holophylla plantation. Species composition, diameter at breast height (DBH) and height distribution of trees larger than 2 cm DBH were measured in ten stands in three study sites of Jeongsu-ri, Daedae-ri, and Hodong. Species and coverage of shrub layer, and A. holophylla seedlings were also investigated. While A. holophylla in non-managed stands (Jengsuri and Daedae-ri study sites) had the importance value of 40% and showed continuous diameter and age distribution, A. holophylla in Hodong site had narrow bell-shaped DBH distribution mostly concentrating between 25-35 cm DBH classes, and single canopy structure. Abies holophylla stands in Hodong have experienced occasional thinning and selective cutting. The correlation coefficient between age-DBH was significant but low ($R^2$=0.2, P=0.03), and similar aged A. holophylla had diverse DBH values. Continuos DBH distribution and multi-canopy structure of A. holophylla stands in Jeongsu-ri site show that natural regeneration of A. holophylla has been continuously occurred in this area. Seedling density of A. holophylla was between 2000 and 33000/ha, however, the number of trees in 2-5 cm DBH class was only 40-150 trees/ha, implying that the survival rate of seedlings is not high. Continuous natural regeneration and 0.6 cm/year of diameter growth rate of A. holophylla indicate that this area could be an appropriate habitat for this species, and A. holophylla plantation in this region seem to persist suggesting the possibility of managing the stands for continuous cover forestry system as well as selective harvesting practices.

Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System (지상관측 레이다 산란계를 이용한 벼 군락의 후방산란계수 측정)

  • Hong, Jin-Young;Kim, Yi-Hyun;Oh, Yi-Sok;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.145-152
    • /
    • 2007
  • The polarimetric backscattering coefficients of a wet-land rice field which is an experimental plot belong to National Institute of Agricultural Science and Technology in Suwon are measured using ground-based polarimetric scatterometers at 1.8 and 5.3 GHz throughout a growth year from transplanting period to harvest period (May to October in 2006). The polarimetric scatterometers consist of a vector network analyzer with time-gating function and polarimetric antenna set, and are well calibrated to get VV-, HV-, VH-, HH-polarized backscattering coefficients from the measurements, based on single target calibration technique using a trihedral corner reflector. The polarimetric backscattering coefficients are measured at $30^{\circ},\;40^{\circ},\;50^{\circ}\;and\;60^{\circ}$ with 30 independent samples for each incidence angle at each frequency. In the measurement periods the ground truth data including fresh and dry biomass, plant height, stem density, leaf area, specific leaf area, and moisture contents are also collected for each measurement. The temporal variations of the measured backscattering coefficients as well as the measured plant height, LAI (leaf area index) and biomass are analyzed. Then, the measured polarimetric backscattering coefficients are compared with the rice growth parameters. The measured plant height increases monotonically while the measured LAI increases only till the ripening period and decreases after the ripening period. The measured backscattering coefficientsare fitted with polynomial expressions as functions of growth age, plant LAI and plant height for each polarization, frequency, and incidence angle. As the incidence angle is bigger, correlations of L band signature to the rice growth was higher than that of C band signatures. It is found that the HH-polarized backscattering coefficients are more sensitive than the VV-polarized backscattering coefficients to growth age and other input parameters. It is necessary to divide the data according to the growth period which shows the qualitative changes of growth such as panicale initiation, flowering or heading to derive functions to estimate rice growth.

Plant Community Structure from the Jilmoi Wetlands to the Donghae Observatory, Baekdudaegan Mountains

  • Choi, Jin-Woo;Kim, Kyung-Won;Yeum, Jung-Hun;Hwang, Won-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.250-262
    • /
    • 2015
  • This study aims to investigate the characteristics of the vegetation structure in the sectin stretching between the Jilmoi wetlands and the Donghae Observatory and to set the criteria for the basic data for a management plan including restoration afterwards. 12 plots($10m{\times}40m$, $20m{\times}20m$) were set up to analyse the vegetation structure. The analysis of the classification by TWINSPAN and ordination by DCA, importance percentage and property, distribution of diameter of breast height, growth increments of major woody species, species diversity and the physicochemical properties of soil were all analyzed. Vegetation classes were divided into 3 communities, which are community I (Pinus densiflora community), community II (Quercus mongolica community) and community III (Quercus mongolica-Tilia amurensis community). The P. densiflora community declined when competing with Q. mongolica and Fraxinus rhynchophylla and Q. mongolica competed with T. amurensis on an understory layer in Q. mongolica community. Q. mongolica competed with T. amurensis on both canopy and understory layers in Q. mongolica-T. amurensis community. P. densiflora declined and it was assumed to succeed to F. rhynchophylla or T. amurensis through Q. mongolica based on the importance percentage and distribution of the diameter of the breast height of small and middle sized trees. The age of P. densiflora was between 47 to 51 years old and Q. mongolica was 61years old. T. amurensis was 61 years old and the growth of Q. mongolica slowed a little. As the result of Shannon's index of species diversity, community I ranged from 0.9578 to 1.1862, community II ranged from 0.7904 to 1.2286 and community III ranged from 0.8701 to 1.0323. The contents of organic matter and cation were low compared to uncultivated mountain soil and it were analysed to be inappropriate for tree growth.

Dry Season Evaporation From Pine Forest Stand In The Middle Mountains Of Nepal

  • Gnawali, Kapil;Jun, KyungSoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.330-330
    • /
    • 2016
  • The quantification of dry season evaporation in regions, where the magnitude of dry season flows is key to the regional water supply, is essential for good water management. Also, tree transpiration has a significant role in the water balance of a catchment whenever it is tree populated, especially in water limited environments. Such is the case in the Middle Mountains of Nepal where dry season flows play a significant role in downstream water provisioning and their proper functioning is key to the welfare of millions of people. This research seeks to study the transpiration of a pine forest stand in the Jikhu Khola Watershed in the Middle Mountains of Nepal. To the author's knowledge, no single study has been made so far to estimate the dry season evaporation from the planted forest stand in the Middle Mountains of Nepal. The study was carried out in planted pine forest embedded within the Jikhu Khola Catchment. Field campaigns of sap flow measurements were carried out from September, 2010 to February, 2011 in the selected plot of 15*15m dimension, to characterize dry season evaporation. This was done by measuring sap fluxes and sapwood areas over the six trees of different Diameter at Breast Height (DBH) classes. The sap flux was assessed using Granier's thermal dissipation probe (TDP) technique while sapwood area was determined using several incremental core(s) taken with a Pressler borer and immediately dyeing with methyl orange for estimating the actual depth of sapwood area. Transpiration of the plot was estimated by considering the contribution of each tree class. For this purpose, sap flux density, sapwood area and the proportion of total canopy area were determined for each tree class of the selected plot. From these data, hourly and diurnal transpiration rates for the plot were calculated for experimental period. Finally, Cienciala model was parameterized using the data recorded by the ADAS and other terrain data collected in the field. The calibrated model allowed the extrapolation of Sap flux density (v) over a six month period, from September 2010 to February 2011. The model given sap flux density was validated with the measured sap flux density from Grainier method.

  • PDF

Intercropping of Cow Pea (Vigna unguiculata) as Summer Forage Yield with Grewia tenax in Irrigated Saline Soil of Khartoum State, Sudan

  • Abdalla, Nasre Aldin Mustafa;Alawad, Seid Ahmed Hussein;ElMukhtar, Ballal Mohamed
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.2
    • /
    • pp.122-127
    • /
    • 2022
  • Agroforestry in terms of intercropping cow pea as summer forage with Grewia tenax was undertaken under sub -irrigation system in two consecutive seasons of 2017 and 2018 in saline soil of Khartoum State of Sudan. The aims were to find out suitable agro forestry system for saline soils as well as to investigate effect of tree spacing on field summer forage crop under semi -irrigation system. Therefore G. tenax trees that spaced at 4×4 m were used as main factor versus cow pea crop that incorporated at 25×50 cm intervals by using completely randomized block design with 3 replications. Trees and crop parameters were determined in terms of plant growth and yield. In addition to land equivalent ratio and soil chemical and physical properties at different layers were determined. The results revealed that, soil parameters in terms of CaCo3, SAR, ESP, pH paste and EC ds/m were increased with increasing soil depths. Meanwhile tree growth did not show any significant differences in the first season in 2017. Whereas in the second season in 2018 tree growth namely; tree height, tree collar and canopy diameters were higher under intercropping than in sole trees. Cow pea plant height recorded significant differences under sole crop in the first season in 2017. Unlike the forage fresh yield that was significant under the inter cropped plots. Tree fruit yield was higher under sole trees and land equivalent ratio was more advantageous under GS2 (1.5 m) which amounted to 4. Therefore it is possible to introduce this agroforestry system under saline soils to provide summer forage of highly nutritive value to feed animals and to increase farmers' income as far as to halt desertification and to sequester carbon.

Impacts of anthropogenic heating on urban boundary layer in the Gyeong-In region (인공열이 도시경계층에 미치는 영향 - 경인지역을 중심으로 -)

  • Koo, Hae-Jung;Ryu, Young-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.665-681
    • /
    • 2012
  • This study investigates the influence of anthropogenic heat (AH) release on urban boundary layer in the Gyeong-In region using the Weather Research and Forecasting model that includes the Seoul National University Urban Canopy Model (SNUUCM). The gridded AH emission data, which is estimated in the Gyeong-In region in 2002 based on the energy consumption statistics data, are implemented into the SNUUCM. The simulated air temperature and wind speed show good agreement with the observed ones particularly in terms of phase for 11 urban sites, but they are overestimated in the nighttime. It is found that the influence of AH release on air temperature is larger in the nighttime than in the daytime even though the AH intensity is larger in the daytime. As compared with the results with AH release and without AH release, the contribution of AH release on urban heat island intensity is large in the nighttime and in the morning. As the AH intensity increases, the water vapor mixing ratio decreases in the daytime but increases in the nighttime. The atmospheric boundary layer height increases greatly in the morning (0800 - 1100 LST) and midnight (0000 LST). These results indicate that AH release can have an impact on weather and air quality in urban areas.

Mapping Paddy Rice Varieties Using Multi-temporal RADARSAT SAR Images

  • Jang, Min-Won;Kim, Yi-Hyun;Park, No-Wook;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.653-660
    • /
    • 2012
  • This study classified paddy fields according to rice varieties and monitored temporal changes in rice growth using SAR backscatter coefficients (${\sigma}^{\circ}$). A growing period time-series of backscatter coefficients was set up for nine fine-beam mode RADARSAT-1 SAR images from April to October 2005. The images were compared with field-measured rice growth parameters such as leaf area index (LAI), plant height, fresh and dry biomass, and water content in grain and plants for 45 parcels in Dangjin-gun, Chungnam Province, South Korea. The average backscatter coefficients for early-maturing rice varieties (13 parcels) ranged from -18.17 dB to -6.06 dB and were lower than those for medium-late maturing rice varieties during most of the growing season. Both crops showed the highest backscatter coefficient values at the heading stage (late July) for early-maturing rice, and the difference was greatest before harvest for early-maturing rice. The temporal difference in backscatter coefficients between rice varieties may play a key role in identifying early-maturing rice fields. On the other hand, comparisons with field-measured parameters of rice growth showed that backscatter coefficients decreased or remained on a plateau after the heading stage, even though the growth of the rice canopy had advanced.

Relationship between RADARSAT Backscattering Coefficient and Rice Growth

  • Hong, Suk-Young;Hong, Sang-Hoon;Rim, Sang-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.109-116
    • /
    • 2000
  • This study was carried out to assess the use of RADARSAT data which is C-band with HH polarization for the rice growth monitoring in Korea. Nine time-series data were taken by shallow incidence angle (standard beam mode 5 or 6) during rice growing season. And then, backscattering coefficients ($\sigma$$^{\circ}$) were extracted by calibration process for comparing with rice growth parameters such as plant height, leaf area index(LAI), and fresh and dry biomass. Field experimental data concerned with rice growth were collected 8 times for the ground truth at the study area, Tangjin, Chungnam, Korea. At the beginning of rice growth, backscattering coefficients were ranged from -l6~-l3dB when rice fields were not covered with rice canopy and flooded. At the maximum vegetative stage of rice, backscattering coefficients of the rice field were the highest ranging from -4.4dB~-3.1dB. The temporal variation of backscattering coefficient($\sigma$$^{\circ}$) in rice field was significant in this study. Backscattering coefficient ($\sigma$$^{\circ}$) of rice field was a little bit lower again after heading stage than before. This results show RADARSAT data is promising for rice monitoring.