• Title/Summary/Keyword: Canopy cover

Search Result 86, Processing Time 0.026 seconds

Study on the Protection and Management of Wildbirds in Chuwangsan National Park (주왕산국립공원내 야생조류의 보호 및 관리에 관한 연구)

  • 이우신;박찬열;조기현
    • Korean Journal of Environment and Ecology
    • /
    • v.8 no.2
    • /
    • pp.183-192
    • /
    • 1995
  • This study was conducted to investigate bird community and to suggest a proper way how to manage and protect wildbirds in Chuwangsan National Park. The survey was carried out over two survey sections by the line transect method in spring, summer and autumn in 1994. Total number of observed birds were 42 species(33 species in spring, 32 species in summer, and 26 species in autumn), and the result was the same with the typical pattern of temperate bird communities. Total number of natural monument and rare birds were 7 species, which included Golden Eagle(Aquila chrysaetos), Chinese Sparrow Hawk(Accipter soloensis), Eagle Owl(Bubo bubo), etc. In breeding season, species richness was high in canopy nesting guild, and density(ea/ha) was high in hole nesting guild. Canopy foraging guild was dominated in spring and summer, ratio of bush(or ground) foraging guild was increased in autumn. Since the habitats of observed natural monuments and rare species were roughly overlapped with the nature preservation area, it is necessary to preserve the area completely and to investigate and protect these species continuously. For the protection of the bush(or ground) foraging guild, it needs to plant bushes around trails and to control users. Food plants, artificial food planting of bushs, and artificial nest are needed for the habituation of wildbirds, and as the damage of wild cats is increasing lately, it needs to control these cats.

  • PDF

Initial Development of Forest Structure and Understory Vegetation after Clear-cut in Pinus densiflora Forest in Southern Gangwon-do Province (강원도 남부 지역에서 소나무림 개벌 후 초기 임분 구조 및 하층식생 발달)

  • Bae, Kwan Ho;Kim, Jun Soo;Lee, Change Seok;Cho, Hyun Je;Lee, Ho Young;Cho, Yong Chan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.23-29
    • /
    • 2014
  • Open- to closed canopy stage and it's ecological characteristics in vegetation succession are commonly described, but poorly understood in Korea. Vegetation development on structure, environment and understory abundance were studied for 16 yr in post-clearcut Pinus densiflora forests in the southern Gangwon-do province by applying space-for-time approach. We sampled 210 plots (10 for structure and 200 for understory) for four seral stages (1yr, 3yr, 10yr and 16yr). After clear-cut, mean stem density increased gradually to $5,714{\pm}645$ stems/ha after 16 years and mean basal area was also from $5.5{\pm}0.7m^2/ha$ after 10 years and doubled at $10.0{\pm}1.6m^2/ha$ in 16 years. Woody debris and bared soil on the forest floor peaked at 11--- after 10 years and at 10.3--- after 3 years, respectively. In understory mean cover declined with all growth form groups following succession, but in richness, forb specie increased with structural development during 16 years. Our study suggested that overstory development did not suppressed whole understory properties especially in richness, thus appeared to act as a filter selectively constraining the understory characteristics. However only long-term studies are essential for elucidating patterns and processes that cannot be inferred form short-term or space-for-time researches. Strong negative relationship between overstory and understory characteristics in conventional models surely reexamined.

Recovery Pattern and Seasonal Dynamics of Kelp Species, Ecklonia cava Population Formed Following the Large-scale Disturbance (대규모 교란현상 후 형성된 대형갈조류 감태(Ecklonia cava) 개체군의 계절적 변동 및 회복 양상)

  • KIM, SANGIL;KANG, YUN HEE;KIM, TAE-HOON;PARK, SANG RUL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.3
    • /
    • pp.103-111
    • /
    • 2016
  • Seasonal dynamics of kelp forest-forming algae, Ecklonia cava population formed following the large-scale disturbance by Typhoon 'Bolaven' in August 2012 were investigated in Jeju Island, Korea. Morphological characteristics, recruits density, mortality rate, total density and biomass were monitored bimonthly from June 2013 to June 2015. Total and longest blade lengths, and individual weight of E. cava showed distinct seasonal trends. Stipe length increased from winter to spring, but did not show increase or reduced from summer to autumn. This indicates that morphological characteristics of E. cava are mainly affected by the change of blades. The optimal temperature for E. cava growth was about $15-18^{\circ}C$ during winter to spring while the growths were inhibited at the water temperature above $20^{\circ}C$ during summer. E. cava exhibited very low recruitment during spring-summer. However, high recruitment was observed on April 2015 when canopy cover was very low due to low density. This indicates that recruitment of E. cava was controlled not by seasonal effects but by physical factors such as canopy and space. The mortality rate of juvenile plants was highest due to their unstable settlement. By June 2015, 34 months after the disturbances, E. cava was almost recovered to the pre-disturbance population size structure. These results suggest that recovery of kelp forest following the large-scale disturbance requires a considerable period of time (more than three years). This study should provide valuable ecological information on management, restoration and protection of kelp species.

High-resolution Meteorological Simulation Using WRF-UCM over a Coastal Industrial Urban Area (WRF-UCM을 이용한 연안산업도시지역 고해상도 기상 모델링)

  • Bang, Jin-Hee;Hwang, Mi-Kyoung;Kim, Yangho;Lee, Jiho;Oh, Inbo
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.45-54
    • /
    • 2020
  • High-resolution meteorological simulations were conducted using a Weather Research and Forecasting (WRF) model with an Urban Canopy Model (UCM) in the Ulsan Metropolitan Region (UMR) where large-scale industrial facilities are located on the coast. We improved the land cover input data for the WRF-UCM by reclassifying the default urban category into four detailed areas (low and high-density residential areas, commercial areas, and industrial areas) using subdivided data (class 3) of the Environmental and Geographical Information System (EGIS). The urban area accounted for about 12% of the total UMR and the largest proportion (47.4%) was in the industrial area. Results from the WRF-UCM simulation in a summer episode with high temperatures showed that the modeled temperatures agreed greatly with the observations. Comparison with a standard WRF simulation (WRF-BASE) indicated that the temporal and spatial variations in surface air temperature in the UMR were properly captured. Specifically, the WRF-UCM reproduced daily maximum and nighttime variations in air temperature very well, indicating that our model can improve the accuracy of temperature simulation for a summer heatwave. However, the WRF-UCM somewhat overestimated wind speed in the UMR largely due to an increased air temperature gradient between land and sea.

Restoration Model of Quercus mongolica Community in the Case of Korean National Capital Region (수도권지역의 신갈나무군집 복원모형)

  • 강현경;방광자
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.6
    • /
    • pp.1-15
    • /
    • 2001
  • The purpose of this study is to figure out the structural characteristics of urban plant community and suggest restoration model of Quercus mongolica in the case of Korean national Capital Region. The investigation areas were selected from urban area of Mt. Nam at Chung-Gu, suburban areas of Mt. Bong at Eunpyoung-GU, Mt. Sungju at Buchon City and non-urban areas of Mt. Suri at Kunpu City and Mt. Chonma t namyangju-City. After the main study field had been classified into the evaluation of the ecological characteristics and the modeling of the vegetation. We analyzed to evaluate the ecological characteristics of the forest structure -- successional stage, naturalness, multi-layer structure of the forest and species diversity, and the plant community structures. We have proposed vegetation restoration model based on the selection of proper plants, the number of individuals, diameter short area of breast height, the shortest distance between plants in non-urban area. As for successional stage, It was judged that the ecological succession may not be followed like the present stage of the surveyed areas in urban, suburban and non-ruban areas. As for the retention of naturalness and multi-layer structures of vegetation, In Quercus mongolica community, Robinia pseudo-acacia and Ailanthus altissima occurred in each layers at Mt. Nam, Mt. Bong and Mt. Sungju, and Eupatorium rugosum occurred in herbaceous layer at Mt. Nam. Consequently, the ecological restoration plan following the structure of the vegetation in Mt. Chonma seemed to be advisable in Q. mongolica community, there were less number of species and individuals in urban areas than those of non-urban areas. Planting of trees following the simulated native plant community of non-urban areas seemed to be required to promote the plants in urban areas. Considering the number of individuals up to three layers in each 400$m^2$ area, it was composed of twenty nine in canopy layer, forth nine in understory layer, 367 in shrub layer and 33.7% herbaceous ground cover in the Q.mongolica community. The suggested restoration model in this study is nan applicable model for the introduction in the cities, and this study shows that continuous experiments and field investigation on this model should be performed in the future.

  • PDF

Estimation of Carbon Stock in the Chir Pine (Pinus roxburghii Sarg.) Plantation Forest of Kathmandu Valley, Central Nepal

  • Sharma, Krishna Prasad;Bhatta, Suresh Prashad;Khatri, Ganga Bahadur;Pajiyar, Avinash;Joshi, Daya Krishna
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.37-46
    • /
    • 2020
  • Vegetation carbon sequestration and regeneration are the two major parameters of forest research. In this study, we analyzed the vegetation carbon stock and regeneration of community-managed pine plantation of Kathmandu, central Nepal. Vegetation data were collected from 40 circular plots of 10 m radius (for the tree) and 1m radius (for seedling) applying a stratified random sampling and nested quadrat method. The carbon stock was estimated by Chave allometric model and estimated carbon stock was converted into CO2 equivalents. Density-diameter (d-d) curve was also prepared to check the regeneration status and stability of the plantation. A d-d curve indicates the good regeneration status of the forest with a stable population in each size class. Diversity of trees was very low, only two tree species Pinus roxburghii and Eucalyptus citriodora occurred in the sample plots. Pine was the dominant tree in terms of density, basal area, biomass, carbon stock and CO2 stock than the eucalyptus. The basal area, carbon stock and CO2 stock of forest was 33±1.0 ㎡ ha-1, 108±5.0 Mg ha-1 and 394±18 Mg ha-1, respectively. Seedling and tree density of the plantation was 4,965 ha-1 and 339 ha-1 respectively. The forest carbon stock showed a positive relationship with biomass, tree diameter, height and basal area but no relationship with tree density. Canopy cover and tree diameter have a negative effect on seedling density and regeneration. In conclusion, the community forest has a stable population in each size class, sequestering a significant amount of carbon and CO2 emitted from densely populated Kathmandu metro city as the forest biomass hence have a potentiality to mitigate the global climate change.

Study on The Water Requirements of Chinese Cabbage. (배추 용수량에 관한 연구)

  • 김현철;정두호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3430-3437
    • /
    • 1974
  • .It is very importaut to know the water consumption of crops in planning irrigation works and practicing suitable soil moisture management. For the purpose of making it clear that how much water be consumed to cultivate the Chinese cabbage, Chamber method has been applied. Main equipments in the transpiration chamber are flowers, manometer and electric thermograph. The chamber made of vynyl plate has a small entrance at the base and an exit at the top, and the ventilation in the chamber was carried out by a flower through the entrance and exit. Air-flow adjusted by an orifice manometer enters the chamber from the outside over the crop canopy through the pipe like a chimney and finally goes out to the outside. Two sets which consist of a pair of dry and wet bulb made by thermistor are installed in the entrance and exit tube, and record air temperature automatically. Evapotranspiration amount is computed from the air-flow quantity and difference in absolute humidity between at the entrance and exit of the chamber by the following equation: ET=(X2-X1)${\times}$Q where ET=evapotranspiration amount X1=absolute humidity at the entrance(g/㎥) X2=absolute humidity at the exit(g/㎥) Q=air-flow quantity(㎥) This study was carried out at the upland farm of the Institute of Agriculture Engimeering and Utilization, Suwon, Korea. from 1971 to 1973. The results obtained in this experiment are as follows: 1. The total amount of evapotranspiration of Chinese Cabbage that is cultivated in autumn is 408.1mm during growth period. 2. Chinese cabbage rapidly grows up in the second ten days of September, 40th to 50th days after seeding. At the same time, the maximum amount of evaportranspiration of Chinese cabbage is 61.6mm/10 days 3. The correlation between Pan-evaporation and evapotranspiration is high, coefficient of correlation r=0.88**, and can be shown as The following regression equation: ET=0.913E+20.273 4. Evapotranspiration is closely related with meteorological factors: r=0.85**, for insolation, r=0.76** for air temperature, respectively. 5. The percentage of evapotranspiration amount, at the beginning of growth stage, gradually increases in proportion as the Chinese Cabbage grows but is largely affected by meteorological factors after the green cover formation. 6. By Blaney and Griddle formula, evaportranspiration coefficient "K" are within from 0,85 to 1.27.

  • PDF

The Vegetation Characteristics of Small Palustrine Wetland in Rural Area (농촌지역 소규모 소택형습지의 식생특성)

  • Kang, Bang Hun;Son, Jin-Kwan;Lee, Sang-Hwa;Kim, Nam-Choon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.3
    • /
    • pp.33-48
    • /
    • 2009
  • A palustrine wetland is a type of a wetland that prevails in Korea as well as an ecosystem that provides various ecological functions and has affluent biodiversity. This study was conducted to understand the characteristics of vegetation in a palustrine wetland by analyzing a life form and naturalized plants, in order to present the maintenance and utilization plan of a small wetland. A total of 249 taxa including 76 families, 188 generics, 209 species, 38 varieties and 2 forma were found at six investigated wetlands. As a result of the appearance ratio analysis, Therophytes (37.8%) with 94 taxa and Hemicryptophytes (31.3%) with 78 taxa were in order of life form, and Gramineae (14.1 %) with 35 taxa and Compositae (11.2 %) with 28 taxa were in order of family level. These were deemed representative vegetation in a palustrine wetland. Equosetum arvense, Phragmites communis, Commelina communis, Persicaria thunbergii, Arenaria serpyllifolia, Stellaria media, Erigeron annuus, Erigeron canadensis and Artemisia princeps var, orientalis were found continuously for a period of investigation in all sites. Equosetum arvense, Phragmites communis and Persicaria thunbergii were species with high appearance frequency. Especially, Persicaria thunbergii was construed high in a cover ratio in May as it develop first among Hydrophytes and form a canopy sooner than anything else. We found that a degree of naturalization and an urbanization index appear comparatively high in Yeongok-ri, Cheonan, Gangjang-ri, Asan and Yodang-ri, Hwasung, which is construed due to artificial interference, such as fanning, fishing, swimming and green-tour program. These results would be used to utilize in restoring a deserted and damaged wetland and to provide fundamental data in creating a wetland as follows.

Regeneration and leaf traits variation of Rhododendron campanulatum along elevation gradient in western Nepal Himalaya

  • Dipesh Karki;Bijay Pandeya;Rachana Bhandari;Dikshya Basnet;Balkrishna Ghimire;Shreehari Bhattarai;Bharat Babu Shrestha
    • Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.152-162
    • /
    • 2024
  • Background: Plant species of the alpine treeline ecotone are highly sensitive to climate change and may adjust their population dynamics, and functional traits in response to changing climate. This study examined regeneration patterns and leaf traits variations in an important treeline ecotone element Rhododendron campanulatum along the elevation gradient in western Nepal to assess its potential adaptive responses to climate change. The distribution range of R. campanulatum (3,400-3,800 m above sea level [a.s.l.]) was divided into five horizontal bands, each with a 100 m elevational range. Eight plots (10 m × 10 m) were sampled in each band, resulting into a total of 40 plots. In each plot, all R. campanulatum individuals and co-occurring tree species were counted. From each elevation, R. campanulatum leaf samples were collected to determine leaf dimensions, leaf density, specific leaf area (SLA), and stomatal density (SD). Results: The density-diameter curve indicated that R. campanulatum was regenerating well, with enhanced regeneration at higher elevation (3,800 m a.s.l.) than at lower. Tree canopy cover appeared to be the major determinant of R. campanulatum regeneration, as indicated by a higher number of seedlings in treeless stands. With increasing elevation, the leaf length, width, SLA, and stomata length decreased but leaf thickness and SD increased. Conclusions: Overall, a higher regeneration and lower SLA with the high SD in the leaves at the upper limit of the species distribution suggested that R. campanulatum is well adapted at its upper distribution range with the possibility of upslope range shift as temperature increases.

Non-point Source Critical Area Analysis and Embedded RUSLE Model Development for Soil Loss Management in the Congaree River Basin in South Carolina, USA

  • Rhee, Jin-Young;Im, Jung-Ho
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.363-377
    • /
    • 2006
  • Mean annual soil loss was calculated and critical soil erosion areas were identified for the Congaree River Basin in South Carolina, USA using the Revised Universal Soil Loss Equation (RUSLE) model. In the RUSLE model, the mean annual soil loss (A) can be calculated by multiplying rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness (LS), crop-management (C), and support practice (P) factors. The critical soil erosion areas can be identified as the areas with soil loss amounts (A) greater than the soil loss tolerance (T) factor More than 10% of the total area was identified as a critical soil erosion area. Among seven subwatersheds within the Congaree River Basin, the urban areas of the Congaree Creek and the Gills Creek subwatersheds as well as the agricultural area of the Cedar Creek subwatershed appeared to be exposed to the risk of severe soil loss. As a prototype model for examining future effect of human and/or nature-induced changes on soil erosion, the RUSLE model customized for the area was embedded into ESRI ArcGIS ArcMap 9.0 using Visual Basic for Applications. Using the embedded model, users can modify C, LS, and P-factor values for each subwatershed by changing conditions such as land cover, canopy type, ground cover type, slope, type of agriculture, and agricultural practice types. The result mean annual soil loss and critical soil erosion areas can be compared to the ones with existing conditions and used for further soil loss management for the area.

  • PDF