• Title/Summary/Keyword: Canopy Moisture

Search Result 64, Processing Time 0.032 seconds

Seasonal Soil Temperature and Moisture Regimes in a Ginseng Garden

  • Bailey, W.G.;Stathers, R.J.;Dobud, A.G.
    • Journal of Ginseng Research
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 1988
  • A field experiment was conducted in the arid interior of British Columbia, Canada to assess the seasonal soil temperature and moisture regimes in an American ginseng garden. As a consequence of the man-modified microclimate (elevated shade canopy and surface covering of mulch), the growing environment of the crop was fundamentally altered when compared to adjacent agricultural growing environments. In the ginseng garden, soil temperatures were found to remain low throughout the growing season whereas soil moisture remained high when compared with the outside garden environment. These results indicate that even in the hot, arid environment of the interior of British Columbia, the growing of ginseng is undertaken in sub-optimal conditions for the major part of the growing season. This poses challenges for the producers of the crop to modify the architecture of the gardens to enhance the soil regime without creating a deleterious aerial environment.

  • PDF

Evaluation of Thermal and Water Stress on Vegetation from Satellite Imagery

  • Viau, Alain A.;Jang, Jae-Dong;Anctil, Francois
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.165-167
    • /
    • 2003
  • To evaluate the thermal and water stress of vegetation canopy in Southern Qu$\'{e}$bec, leaf water status was evaluated from vegetation indices derived from SPOT VEGETATION images and surface temperature from NOAA AVHRR images. This study was conducted by investigating vegetation conditions for two different periods, from June to August, 1999 and 2000. The vegetation indices were integrated for the evaluating vegetation conditions as a new index, normalized moisture index (NMI). A trapezoid was defined by the NMI and surface temperature, and the thermal and water status of the vegetation canopy was determined according to separate small sections within the trapezoid.

  • PDF

Modeling Growth of Canopy Heights and Stem Diameters in Soybeans at Different Groundwater Level (지하 수위가 다른 조건에서 콩의 초장과 경태 모델링)

  • Choi, Jin-Young;Kim, Dong-Hyun;Kwon, Soon-Hong;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.395-404
    • /
    • 2017
  • Cultivating soybeans in rice paddy field reduces labor costs and increases the yield. Soybeans, however, are highly susceptible to excessive soil water in paddy field. Controlled drainage system can adjust groundwater level (GWL) and control soil moisture content, resulting in improvement soil environments for optimum crop growth. The objective of this study was to fit the soybean growth data (canopy height and stem diameter) using Gompertz model and Logistic model at different GWL and validate those models. The soybean, Daewon cultivar, was grown on the lysimeters controlled GWL (20cm and 40cm). The soil textures were silt loam and sandy loam. The canopy height and stem diameter were measured from the 20th days after seeding until harvest. The Gompertz and Logistic models were fitted with the growth data and each growth rate and maximum growth value was estimated. At the canopy height, the $R_2$ and RMSE were 0.99 and 1.58 in Gompertz model and 0.99 and 1.33 in Logistic model, respectively. The large discrepancy was shown in full maturity stage (R8), where plants have shed substantial amount of leaves. Regardless of soil texture, the maximum growth values at 40cm GWL were greater than the value at 20cm GWL. The growth rates were larger at silt loam. At the stem diameter, the $R_2$ and RMSE were 0.96 and 0.27 in Gompertz model and 0.96 and 0.26 in Logistic model, respectively. Unlike the canopy height, the stem diameter in R8 stage didn't decrease significantly. At both GWLs, the maximum growth values and the growth rates at silt loam were all larger than the values at sandy loam. In conclusion, Gompertz model and Logistic model both well fit the canopy heights and stem diameters of soybeans. These growth models can provide invaluable information for the development of precision water management system.

Numerical Modeling of Water Transfer among Precipitation, Surface Water, Soil Moisture and Groundwater

  • Chen, Xi;Zhang, Zhicai;Chen, Yongqin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.2-11
    • /
    • 2006
  • In the processes of hydrological cycle, when precipitation reaches the ground surface, water may become surface runoff or infiltrate into soil and then possibly further percolate into groundwater aquifer. A part of the water is returned to the atmosphere through evaporation and transpiration. Soil moisture dynamics driven climate fluctuations plays a key role in the simulation of water transfer among ground surface, unsaturated zone and aquifer. In this study, a one-layer canopy and a four-layer soil representation is used for a coupled soil-vegetation modeling scheme. A non-zero hydraulic diffusivity between the deepest soil layer modeled and groundwater table is used to couple the numerical equations of soil moisture and groundwater dynamics. Simulation of runoff generation is based on the mechanism of both infiltration excess overland flow and saturation overland flow nested in a numerical model of soil moisture dynamics. Thus, a comprehensive hydrological model integrating canopy, soil zone and aquifer has been developed to evaluate water resources in the plain region of Huaihe River basin in East China and simulate water transfer among precipitation, surface water, soil moisture and groundwater. The newly developed model is capable of calculating hydrological components of surface runoff, evapotranpiration from soil and aquifer, and groundwater recharge from precipitation and discharge into rivers. Regional parameterization is made by using two approaches. One is to determine most parameters representing specific physical values on the basis of characterization of soil properties in unsaturated zone and aquifer, and vegetations. The other is to calibrate the remaining few parameters on the basis of comparison between measured and simulated streamflow and groundwater tables. The integrated modeling system was successfully used in the Linhuanji catchment of Huaihe plain region. Study results demonstrate that (1) on the average 14.2% of precipitation becomes surface runoff and baseflow during a ten-year period from 1986 to 1995 and this figure fluctuates between only 3.0% in drought years of 1986, 1988, 1993 and 1994 to 24.0% in wet year of 1991; (2) groundwater directly deriving from precipitation recharge is about 15.0% t of the precipitation amount, and (3) about half of the groundwater recharge flows into rivers and loses through evaporation.

  • PDF

Edge Vegetation Structure in Kaya Mountain National Park (가야산 국립공원의 주연부식생구조)

  • 오구균;진태호;양민영
    • Korean Journal of Environment and Ecology
    • /
    • v.3 no.1
    • /
    • pp.51-69
    • /
    • 1989
  • To investigate edge vegetation structure and edge species in Kaya Mountain National Park, field survey was executed from July to August, 1989 and the result are as follows. Cantilevered and advancing types of edge vegetation were observed on site, The relative importance values of major species were changed along distance from edge to forest interior and were seemed to be affected by aspect, soil moisture and present tree layer vegetation. Especially, light-oriented species were observed as a codominant species under pine tree canopy due to selective allelopathy effect and thin canopy. Ecological indices according to the distance from edge to forest interior did not show regular pattern, but edge depth was estimated as 15-20m, approximately, Dominant species of edge seemed to be affected by soil moisture rather than altitude and aspect, but floristic similarities seemed to be affected by altitude. Frequency classes of edge species were different by aspect, altitude and physiogra-phical location. Lespedeza maximowiczii, Weigela subsessilis and Fraxinus rhynchophylla showed high frequency class in all environment conditions.

  • PDF

Effects of Forest Tending Works on the Crown Fuel Characteristics of Pinus densiflora S. et Z. Stands in Korea (숲가꾸기 사업이 소나무림의 수관연료특성에 미치는 영향)

  • Kim, Sungyong;Lee, Byungdoo;Seo, Yeonok;Jang, Mina;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.359-366
    • /
    • 2011
  • The objective of this study was to analyze the changes of crown fire hazard possibility from the effects of forest tending works (FTW) in Pinus densiflora stands in Korea. The study sites were located in Youngju (FTW) and Bonghwa (Control) areas. Ten representative sample trees were destructively felled at each areas to analyze the crown fuel characteristics. The results of this study showed that crown fuel moisture content in Youngju and Bonghwa areas were 103.6% and 104.4%, respectively. The needles and twigs with less than 1cm diameter accounted 50.3% of the total crown fuel load in Youngju area and 62.0% in Bonghwa area. On the other hand, it was observed in Youngju that the canopy bulk density was $0.11kg/m^3$ lower but have 1.3 m higher average canopy base height therefore having a possibility of lower crown fire hazard as compared to Bonghwa that had higher canopy bulk density and lower canopy base height.

Vegetation and Environment of the Natural Monument (No. 432) Jeju Sanghyo-dong Cymbidium kanran Habitat (천연기념물 제432호 제주 상효동 한란 자생지의 환경 및 식생)

  • Shin, Jae-Kwon;Koo, Bon-Youl;Kim, Han-Gyeoul;Son, Sung-Won;Cho, Hyun-Je;Bae, Kwan-Ho;Ryang, Hyung-Ho;Park, Joeng-Geun;Lee, Jong-Suk;Cho, Yong-Chan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.321-338
    • /
    • 2014
  • In the Natural Monument (No. 432) Jeju Sanghyo-dong Cymbidium kanran Habitat (39 ha), flora, vegetation diversity, stand structure, mirco-climate, canopy openness, light environment and soil temperature and moisture were quantified from Oct. 2013 to Feb. 2014. Compare to Seogwipo-si, daily mean temperature ($5.7^{\circ}C$) and moisture (75.8%) in study area were lower at $3.3^{\circ}C$ and 15%, respectively. Mean soil temperature and moisture were $16.5^{\circ}C$ and 37.3%, respectively, and mean litter layer depth (n = 81) was 4.3 cm. Mean canopy openness and light availability at forest floor were 15.5% and $8.5mol{\cdot}m^{-2}{\cdot}day^{-1}$, respectively. Total of 22 species including vascular and bryophyte plants and 6 vegetation group were observed. Castanopsis siebildii was dominant species in study area, and density and basal area were 1,777 stem/ha and $90.3m^2/ha$.

Net Radiation and Soil Heat Fluxes Measured on Coastal Wetland Covered with Reeds (갈대 서식 연안습지에서의 순복사와 토양열 플럭스)

  • Kim, Hee-Jong;Kim, Dong-Su;Yoon, Ill-Hee;Lee, Dong-In;Kwon, Byung-Hyuk
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • In the coastal wetland the mud is consist of fine particles, which means that it is characterized by small gap, and heat transfer is obstructed since moisture is found between the gaps. The relationship between net radiation ($R_N$) and soil heat flux($H_G$) shows a counterclockwise hysteresis cycle, which refer to a time lag behind in the maximal soil heat fluxes. The albedo is independent of seasonal variation of the vegetation canopy which plays very important roles to store and control the heat in the atmospheric surface layer.

Analyses of Transpiration and Growth of Paprika (Capsicum annuum L.) as Affected by Moisture Content of Growing Medium in Rockwool Culture

  • Tai, Nguyen Huy;Park, Jong Seok;Shin, Jong Hwa;Ahn, Tae In;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.340-345
    • /
    • 2014
  • Since the moisture content (MC) of growing medium closely related with the crop transpiration, the MC should be included to the environmental factors to be considered for irrigation control in soilless culture. The objective of this study was to analyze the transpiration of paprika plants using daily mean solar radiation (RAD) and vapor pressure deficit (VPD) as well as the growth of the plants at different MCs of rockwool growing media. The starting points of irrigation were controlled by a moisture sensor with minimum set points of 40%, 50%, and 60% of MCs. The canopy transpirations were measured for 80 to 120 days after transplanting and analyzed. The transpirations were well regressed with a combination of both RAD and VPD rather than daily mean RAD only under the controlled MCs. The transpiration at 60% MC was higher than those at 50% and 40% MCs. Leaf area, leaf fresh and dry weights at 60% MC were higher than those at 50% and 40% MCs while the number of leaves had no significant difference among the MCs. There were no significant differences in number of fruits and fruit size among all the MCs, while fruit weight was significantly lower at 40% MC than other treatments. Fresh and dry fruit yields were the highest at 60% MC. Therefore it was concluded that the transpiration was affected by the MC of rockwool growing medium and the minimum set point of 50-60% MC of rockwool growing medium gave better effects on the growth of the paprika plants.