• Title/Summary/Keyword: Canny detection

Search Result 156, Processing Time 0.023 seconds

Edge based Interactive Segmentation (경계선 기반의 대화형 영상분할 시스템)

  • Yun, Hyun Joo;Lee, Sang Wook
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • Image segmentation methods partition an image into meaningful regions. For image composition and analysis, it is desirable for the partitioned regions to represent meaningful objects in terms of human perception and manipulation. Despite the recent progress in image understanding, however, most of the segmentation methods mainly employ low-level image features and it is still highly challenging to automatically segment an image based on high-level meaning suitable for human interpretation. The concept of HCI (Human Computer Interaction) can be applied to operator-assisted image segmentation in a manner that a human operator provides guidance to automatic image processing by interactively supplying critical information about object boundaries. Intelligent Scissors and Snakes have demonstrated the effectiveness of human-assisted segmentation [2] [1]. This paper presents a method for interactive image segmentation for more efficient and effective detection and tracking of object boundaries. The presented method is partly based on the concept of Intelligent Scissors, but employs the well-established Canny edge detector for stable edge detection. It also uses "sewing method" for including weak edges in object boundaries, and 5-direction search to promote more efficient and stable linking of neighboring edges than the previous methods.

  • PDF

Robust Real-Time Lane Detection in Luminance Variation Using Morphological Processing (형태학적 처리를 이용한 밝기 변화에 강인한 실시간 차선 검출)

  • Kim, Kwan-Young;Kim, Mi-Rim;Kim, In-Kyu;Hwang, Seung-Jun;Beak, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1101-1108
    • /
    • 2012
  • In this paper, we proposed an algorithm for real-time lane detecting against luminance variation using morphological image processing and edge-based region segmentation. In order to apply the most appropriate threshold value, the adaptive threshold was used in every frame, and perspective transform was applied to correct image distortion. After that, we designated ROI for detecting the only lane and established standard to limit region of ROI. We compared performance about the accuracy and speed when we used morphological method and do not used. Experimental result showed that the proposed algorithm improved the accuracy to 98.8% of detection rate and speed of 36.72ms per frame with the morphological method.

Character Region Detection Using Structural Features of Hangul Vowel (한글 모음의 구조적 특징을 이용한 문자영역 검출 기법)

  • Park, Jong-Cheon;Lee, Keun-Wang;Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.872-877
    • /
    • 2012
  • We proposes the method to detect the Hangul character region from natural image using topological structural feature of Hangul grapheme. First, we transform a natural image to a gray-scale image. Second, feature extraction performed with edge and connected component based method, Edge-based method use a Canny-edge detector and connected component based method applied the local range filtering. Next, if features are not corresponding to the heuristic rule of Hangul character, extracted features filtered out and select candidates of character region. Next, candidates of Hangul character region are merged into one Hangul character using Hangul character merging algorithm. Finally, we detect the final character region by Hangul character class decision algorithm. Experimental result, proposed method could detect a character region effectively in images that contains a complex background and various environments. As a result of the performance evaluation, A proposed method showed advanced results about detection of Hangul character region from mobile image.

Detection of Pavement Borderline in Natural Scene using Radial Region Split for Visually Impaired Person (방사형 영역 분할법에 의한 자연영상에서의 보도 경계선 검출)

  • Weon, Sun-Hee;Kim, Gye-Young;Na, Hyeon-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.67-76
    • /
    • 2012
  • This paper proposes an efficient method that helps a visually impaired person to detect a pavement borderline. A pedestrian is equipped with a camera so that the front view of a natural scene is captured. Our approach analyzes the captured image and detects the borderline of a pavement in a very robust manner. Our approach performs the task in two steps. In a first step, our approach detects a vanishing point and vanishing lines by applying an edge operator. The edge operator is designed to take a threshold value adaptively so that it can handle a dynamic environment robustly. The second step is to determine the borderlines of a pavement based on vanishing lines detected in the first step. It analyzes the vanishing lines to form VRays that confines the pavement only. The VRays segments out the pavement region in a radial manner. We compared our approach against Canny edge detector. Experimental results show that our approach detects borderlines of a pavement very accurately in various situations.

SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection (윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색)

  • Yu, Seung-Hoon;Kim, Deok-Hwan;Lee, Seok-Lyong;Chung, Chin-Wan;Kim, Sang-Hee
    • Journal of KIISE:Databases
    • /
    • v.35 no.4
    • /
    • pp.345-355
    • /
    • 2008
  • SIFT is popularly used in computer vision application such as object recognition, motion tracking, and 3D reconstruction among various shape descriptors. However, it is not easy to apply SIFT into the image similarity search as it is since it uses many high dimensional keypoint vectors. In this paper, we present a SIFT based image similarity search method using an edge image pyramid and an interesting region detection. The proposed method extracts keypoints, which is invariant to contrast, scale, and rotation of image, by using the edge image pyramid and removes many unnecessary keypoints from the image by using the hough transform. The proposed hough transform can detect objects of ellipse type so that it can be used to find interesting regions. Experimental results demonstrate that the retrieval performance of the proposed method is about 20% better than that of traditional SIFT in average recall.

Sensor Fusion Docking System of Drone and Ground Vehicles Using Image Object Detection (영상 객체 검출을 이용한 드론과 지상로봇의 센서 융합 도킹 시스템)

  • Beck, Jong-Hwan;Park, Hee-Su;Oh, Se-Ryeong;Shin, Ji-Hun;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.217-222
    • /
    • 2017
  • Recent studies for working robot in dangerous places have been carried out on large unmanned ground vehicles or 4-legged robots with the advantage of long working time, but it is difficult to apply in practical dangerous fields which require the real-time system with high locomotion and capability of delicate working. This research shows the collaborated docking system of drone and ground vehicles which combines image processing algorithm and laser sensors for effective detection of docking markers, and is finally capable of moving a long distance and doing very delicate works. We proposed the docking system of drone and ground vehicles with sensor fusion which also suggests two template matching methods appropriate for this application. The system showed 95% docking success rate in 50 docking attempts.

Mobile Phone Camera Based Scene Text Detection Using Edge and Color Quantization (에지 및 컬러 양자화를 이용한 모바일 폰 카메라 기반장면 텍스트 검출)

  • Park, Jong-Cheon;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.847-852
    • /
    • 2010
  • Text in natural images has a various and important feature of image. Therefore, to detect text and extraction of text, recognizing it is a studied as an important research area. Lately, many applications of various fields is being developed based on mobile phone camera technology. Detecting edge component form gray-scale image and detect an boundary of text regions by local standard deviation and get an connected components using Euclidean distance of RGB color space. Labeling the detected edges and connected component and get bounding boxes each regions. Candidate of text achieved with heuristic rule of text. Detected candidate text regions was merged for generation for one candidate text region, then text region detected with verifying candidate text region using ectilarity characterization of adjacency and ectilarity between candidate text regions. Experctental results, We improved text region detection rate using completentary of edge and color connected component.

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.

The Proposal of Segmentation Algorithm for the Applying Breast Ultrasound Image to CAD (유방 초음파 영상의 CAD 적용을 위한 Segmentation 알고리즘 제안)

  • Koo, Lock-Jo;Jung, In-Sung;Bea, Jea-Ho;Choi, Sung-Wook;Park, Hee-Boong;Wang, Gi-Nam
    • IE interfaces
    • /
    • v.21 no.4
    • /
    • pp.394-402
    • /
    • 2008
  • The objective of this paper is to design segmentation algorithm for applying the breast ultrasound image to CAD(Computer Aided Diagnosis). This study is conducted after understanding limits, used algorithm and demands of CAD system by interviewing with a medical doctor and analyzing related works based on a general CAD framework that is consisted of five step-establishment of plan, analysis of needs, design, implementation and test & maintenance. Detection function of CAD is accomplished by Canny algorithm and arithmetic operations for segmentation. In addition to, long computing time is solved by extracting ROI (Region Of Interests) and applying segmentation technical methods based morphology algorithm. Overall course of study is conducted by verification of medical doctor. And validity and verification are satisfied by medical doctor's confirmation. Moreover, manual segmentation of related works, restrictions on the number of tumor and dependency of image resolution etc. was solved. This study is utilized as a support system aided doctors' subjective diagnosis even though a lot of future studies is needed for entire application of CAD system.

Automated Image Co-registration Using Pre-qualified Area Based Matching Technique (사전검수 영역기반 정합법을 활용한 영상좌표 상호등록)

  • Kim Jong-Hong;Heo Joon;Sohn Hong-Gyoo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.181-185
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene, one of which represents a reference image, while the other is geometrically transformed to the one. In order to improve efficiency and effectiveness of the co-registration approach, the author proposed a pre-qualified area matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with cross correlation coefficient. For refining matching points, outlier detection using studentized residual was used and iteratively removes outliers at the level of three standard deviation. Throughout the pre-qualification and the refining processes, the computation time was significantly improved and the registration accuracy is enhanced. A prototype of the proposed algorithm was implemented and the performance test of 3 Landsat images of Korea showed: (1) average RMSE error of the approach was 0.436 Pixel (2) the average number of matching points was over 38,475 (3) the average processing time was 489 seconds per image with a regular workstation equipped with a 3 GHz Intel Pentium 4 CPU and 1 Gbytes Ram. The proposed approach achieved robustness, full automation, and time efficiency.

  • PDF