• Title/Summary/Keyword: Canisters

Search Result 69, Processing Time 0.028 seconds

Comparative analysis of modeling approaches for sulfide-induced corrosion of copper disposal canisters in a 3-dimensional domain

  • Heejae Ju;Nakkyu Chae;Jung-Woo Kim;Hong Jang;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3385-3396
    • /
    • 2024
  • Copper canisters are commonly employed to contain HLW for the long-term, making it crucial to understand how corrosion affects the canister. This study conducted a comparative analysis of two widely used calculation methods for modeling canister corrosion within a 3-D DGR domain. The first method, termed transport-limited corrosion, assumes an immediate sulfide-copper reaction and has been traditionally used due to its conservative nature. The second method, known as the potential-limited corrosion, considers coupled redox reactions at the canister surface and computes corrosion rates through anodic current density. From the results, we found that the edge of the canister geometry and the omission of electrochemical kinetics impose critical limitations with the transport-limited corrosion method. These limitations include the singularity problem, excessive sensitivity to the curvature of the canister's edge, and an inability to evaluate the distribution of corrosion rate over the canister surface as a function of the sulfide concentration. On the other hand, the potential-limited corrosion method avoided the limitations found in the other method. Since the factors relating to these limitations are critical to the design and optimization of the copper disposal canister, careful consideration when selecting appropriate calculation methods for corrosion will be required.

Surface Engineering Technologies to Mitigate Chloride-Induced Stress-Corrosion Cracking in Stainless Steel Dry Cask Storage Containments for Used Nuclear Fuel

  • Jinwook Choi;Kumar Sridharan;Hwasung Yeom
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.3
    • /
    • pp.325-338
    • /
    • 2024
  • Interim dry cask storage systems comprising AISI 304 or 316 stainless steel canisters have become critical for the storage of spent nuclear fuel from light water reactors in the Republic of Korea. However, the combination of microstructural sensitization, residual tensile stress, and corrosive environments can induce chloride-induced stress corrosion cracking (CISCC) for stainless steel canisters. Suppressing one or more of these three variables can effectively mitigate CISCC initiation or propagation. Surface-modification technologies, such as surface peening and burnishing, focus on relieving residual tensile stress by introducing compressive stress to near-surface regions of materials. Overlay coating methods such as cold spray can serve as a barrier between the environment and the canister, while also inducing compressive stress similar to surface peening. This approach can both mitigate CISCC initiation and facilitate CISCC repair. Surface-painting methods can also be used to isolate materials from external corrosive environments. However, environmental variables, such as relative humidity, composition of surface deposits, and pH can affect the CISCC behavior. Therefore, in addition to research on surface modification and coating technologies, site-specific environmental investigations of various nuclear power plants are required.

Evaluation of Water Suction for the Compacted Bentonite Buffer Considering Temperature Variation (온도 변화를 고려한 압축 벤토나이트 완충재의 수분흡입력 평가)

  • Yoon, Seok;Go, Gyu-Hyun;Lee, Jae-Owan;Kim, Geon-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.7-14
    • /
    • 2019
  • The compacted bentonite buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW), and it is considered the best candidate for the buffer material. The buffer is located between disposal canisters and near-field rock mass, and it interrupts the release of radionuclide from disposal canisters and protect them from the penetration of groundwater. At initial disposal condition, degree of saturation of the compacted bentonite buffer decreases because of high thermal quantities released from the disposal canisters. However, the degree of saturation of the compacted bentonite buffer gradually increases caused by inflow of groundwater. The saturated and unsaturated behavior of the buffer is a very important input data since it can determine the safety performance of EBS. Therefore, this paper investigated water retention capacity (WRC) for the Korean compacted bentonite buffer. The WRC of the compacted bentonite buffer was derived by measuring volumetric water content and water suction when temperature variation was between 24℃~125℃ considering decrease of degree of saturation with respect to temperature increase. The WRC was also derived with the same volumetric water content under the room temperature condition, and it showed 1~15% larger water suction than high temperature condition.

High degree of supervision improves adherence to inhaled corticosteroids in children with asthma

  • Park, Geun Mi;Han, Hye Won;Kim, Hee Se;Kim, Jae Youn;Lee, Eun;Cho, Hyun-Ju;Yang, Song-I;Jung, Young-Ho;Hong, Soo-Jong;Kim, Hyung Young;Seo, Ju-Hee;Yu, Jinho
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.12
    • /
    • pp.472-477
    • /
    • 2015
  • Purpose: Adherence to treatment with inhaled corticosteroids (ICS) is a critical determinant of asthma control. The objective of this study was to assess factors that determine adherence to ICS therapy in children with asthma. Methods: Fifty-eight children with asthma, aged 5 to 16 years, used ICS with or without a spacer for 3 months. Adherence rates as measured from questionnaires and canisters, asthma symptom scores, and inhalation technique scores were assessed every 30 days. The degree of supervision by caregivers was assessed at day 30. Results: Adherence rates measured using canisters were lower at day 60 than at day 30 (P=0.044) and did not change thereafter ($74.4%{\pm}17.4%$ at day 30, $66.5%{\pm}18.4%$ at day 60, and $67.4%{\pm}22.2%$ at day 90). Adherence rates at days 60 and 90 and during the total study period were significantly different when measured by using questionnaires versus canisters (P<0.001, P=0.022, and P =0.001, respectively). In the comparison of adherence rates repeatedly measured at days 30, 60, and 90 and adherence rates during the total study period among the 3 groups, adherence rates in the high-degree supervision group were significantly higher than those in the low-degree supervision group ($82.0{\pm}16.0$ vs. $66.1{\pm}14.5$, $75.4{\pm}14.4$ vs. $56.2{\pm}18.4$, $75.0{\pm}18.3$ vs. $55.0{\pm}19.7$ [P=0.027]; $77.9{\pm}12.2$ vs. $59.1{\pm}11.4$ [P=0.021]) after adjustment for sex and age. Conclusion: The level of caregiver supervision is an important factor affecting adherence to ICS therapy in children with asthma. Therefore, a high degree of supervision may be required to increase adherence to ICS therapy in children with asthma.

Evaluation of Silicon Carbide (SiC) for Deep Borehole Disposal Canister (심부시추공 처분용기 재료로서 SiC 세라믹의 적합성 평가)

  • LEE, Minsoo;LEE, Jongyoul;CHOI, Heuijoo;YOO, MalGoBalGaeBitNaLa;JI, Sunghoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • To overcome the low mechanical strength and corrosion behavior of a carbon steel canister at high temperature condition of a deep borehole, SiC ceramics were studied as an alternative material for the disposal canister. In this paper, a design concept for a SiC canister, along with an outer stainless steel container, was proposed, and its manufacturing feasibility was tested by fabricating several 1/3 scale canisters. The proposed canister can contain one PWR assembly. The outer container was also prepared for the string formation of SiC canisters. Thermal conductivity was measured for the SiC canister. The canister had a good thermal conductivity of above $70W{\cdot}m^{-1}{\cdot}K^{-1}$ at $100^{\circ}C$. The structural stability was checked under KURT environment, and it was found that the SiC ceramics did not exhibit any change for the 3 year corrosion test at $70^{\circ}C$. Therefore, it was concluded that SiC ceramics could be a good alternative to carbon steel in application to deep borehole disposal canisters.

Heat Transfer Modeling by the Contact Condition and the Hole Distance for A-KRS Vertical Disposal (A-KRS 수직 처분공 접촉 조건 및 처분공 간의 거리에 따른 열전달 해석)

  • Kim, Dae-Young;Kim, Seung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • The A-KRS (Advanced Korean Reference Disposal System) is the disposal concept for pyroprocessed waste, which has been developed by the Korea Atomic Energy Research Institute. In this disposal concept, the amount of high-level radioactive waste is minimized using pyrochemical process, called pyroprocessing. The produced pyroprocessed waste is then solidified in the form of monazite ceramic. The final product of ceramic wastes will be disposed of in a deep geological repository. By the way, the decay heat is generated due to the radioactive decay of fission products and raises the temperature of buffer materials in the near field of radioactive waste repository. However, the buffer temperature must be kept below $100^{\circ}C$ according to the safety regulation. Usually, the temperature can be controlled by variation of the canister interdistance. However, KAERI has modelled thermal analysis under the boundary condition, where the waste canisters are in direct contact with each other. Therefore, a reliable temperature analysis in the disposal system may fail because of unknown thermal resistence values caused by the spatial gap between waste canisters. In the present work, we have performed thermal analyses considering the gap between heating elements and canisters at the beginning of canister loading into the radioactive waste repository. All thermal analyses were performed using the COMSOL software package.

Comparison of Measurement Methods for Volatile Organic Compounds in Ambient Air Using Adsorbent Tubes and Canisters (흡착관과 캐니스터를 이용한 대기 중 휘발성유기화합물 측정방법의 비교 평가)

  • Baek, Sung-Ok;Seo, Young-Kyo;Heo, Gwi-Seok;Jeon, Chan-Gon;Lee, Min-do;Han, Jin-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.305-319
    • /
    • 2016
  • This study was carried out to evaluate the performance of two sampling methods, i.e., adsorbent tubes and canisters, for the measurement of ambient volatile organic compounds (VOCs). A total of 24 target VOCs were selected from a list of 48 priority hazardous air pollutants (HAPs) in Korea. The two sampling methods were investigated with a wide range of performance criteria such as repeatability, linearity, and lower detection limits. In addition, mean relative errors (MRE) and mean duplicate precisions (MDP) were estimated by inter-lab comparison studies for duplicate field samples. Precisions for the two methods appeared to be well comparable with the performance criteria recommended by USEPA TO-15 and TO-17 for canister and adsorbent methods, respectively. Correlations and variations between the VOCs concentrations determined by the two methods were generally good in most cases. However, MREs and MDPs for individual VOCs appeared to be widely ranged, depending on each VOC. This implies that the two methods have its own advantages and disadvantages in determining a variety of VOCs in ambient air, and neither of which has absolute superiority. Finally, 9 of 24 VOCs were found to be difficult to determine by either methods due to their unstability in a canister, and lack of appropriate standard materials. Thus, it is suggested that development of measurement methods for such unstable VOCs is an urgent task from a viewpoint of HAPs management.

Development of Source Profiles and Estimation of Source Contribution for VOCs by the Chemical Mass Balance Model in the Yeosu Petrochemical Industrial Complex (여수석유화학산단 내 VOCs에 대한 오염원 분류표의 개발 및 CMB 모델에 의한 기여도 산정)

  • Jeon Jun-Min;Hur Dong;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.83-96
    • /
    • 2005
  • The purposes of this study were to characterize the local levels of VOCs (volatile organic compounds), to develop source profiles of VOCs, and to quantify the source contribution of VOCs using the CMB (chemical mass balance) model. The concentration of VOCs had been measured every 6-day duration in the SRO monitoring site in the Yeosu Petrochemical Industrial Complex from September 2000 to August 2002. The total of 35 target VOCs, which were included in the TO-14 designated from the U.S. EPA, was selected to be monitored in the study area. During a 24-h period, the ambient VOCs were sampled by using canisters placing about 10 ~ 15 m above the ground level. The collected canisters were then analyzed by a GC-MS in the laboratory. Aside from ambient sampling at the SRO site, the VOCs had been intensively and massively measured from 8 direct sources and 4 general sources in the study area. The results obtained in the study were as follows; first, the annual mean concentrations of the target VOCs were widely distributed regardless of monitoring sites in the Yeosu Petrochemical Industrial Complex. In particular, the concentrations of BTX (Benzene, Toluene, Xylene), vinyl chloride were higher than other target compounds. Second, based on these source sample data, source profiles for VOCs were developed to apply a receptor model, the CMB model. Third, the results of source apportionment study for the VOCs in the SRO Site were as follows; The source of petrochemical plant was apportioned by 31.3% in terms of VOCs mass. The site was also affected by 16.7% from wastewater treatment plant, 14.0% from iron mills, 8.4% from refineries, 4.4% from oil storage, 3.8% from automobiles, 2.3% from fertilizer, 2.3% from painting, 2.2% from waste incinerator, 0.6% from graphic art, and 0.4% from gasoline vapor sources.

Characteristics of Aromatic Hydrocarbons Measured in an As-built Building (입주 전 신축 건물의 사무실내 방향족 탄화수소의 농도 특성)

  • 나광삼;배귀남;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.545-552
    • /
    • 2000
  • Eight aromatic hydrocarbons were quantified in a newly constructed building before occupancy during the period of November 1997 to January 1998. Air samples were collected in 6 L stainless steel canisters for 8 hours based on working hour. It was found that the measured total concentration of aromatic hydrocarbons decreases rapidly with time up to a steady-state value. However, the fractions for each aromatic hydrocarbon were greatly changed with time. The concentration ratios of indoor to outdoor for aromatic hydrocarbons are greater than 1 during early period of the measurement, and the ratios decrease with time. The concentrations of toluene, m+p-xylene, ethylbenzene, and o-xylene are much higher than those of styrene, 1, 2, 4-trimethylbenzene, and 1, 3, 5-f trimethylbenzene in indoor air. The concentration fractions of m+p-xylene, ethylbenzed, and o-xylene in indoor air are about twice as hight as those in outdoor air measured during the similar period. It was concluded that the aromatic hydrocarbons were emitted from building materials, paints, and adhesives in an-built building.

  • PDF

Comparison of Sampling and Analysis Methods for Volatile Organic Compounds in Ambient Air (대기중 휘발성 유기화합물의 채취 및 분석 방법 비교)

  • 나광삼;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.507-518
    • /
    • 1998
  • A field comparison study was carried out to quantify differences among various sampling and analytical methods for volatile organic compounds (VOCs) at a site in Vlsan in June 1997. Air sampling containers (SUMMA canisters) were used by the Korea Institute of Science and Technology (KIST) and adsorption tubes (carbotrap) were used by Yeungnam University (YN Univ.) for sampling ambient air. Duplicate samples obtained by KIST were analyzed by KIST with a GC-MS system for aromatics and halogenated hydrocarbons and by Atm AA with a GC -FID system for C2∼C9 hydrocarbons, respectively. The adsorption tube samples were analyzed by YN Univ. with a GC-FID system for aromatics. VOC levels for the duplicate canister sampls analyzed by KIST and Atm AA were in good agreement. Concentrations of aromatics by the adsroption tube method were generally higher than those by the canister sampling method by factor of 1.5 to 2.0. Differences between the two sampling methods were discussed.

  • PDF