• Title/Summary/Keyword: Candidate Gene

Search Result 808, Processing Time 0.024 seconds

GWAS analysis and selection of useful resources for direct-seeding related mesocotyl elongation in rice

  • Park, So-Yeon;Lee, Ah-Rim;Wang, Heng;Son, Tae-Soo;Ryu, SuNoh;Kwon, Soon-Wook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.151-151
    • /
    • 2017
  • In Asia, rice production has some difficulties with reduction of farm household population and increase of elderly population. As a result, it has resulted in inefficiency and we needs to reduce labor force and improve labor productivity. Direct-seeding in rice could reduce labor and production costs, the area of direct seeding is increasing in japonica rice production in Asia. In direct seedling cultivation competition against weeds is one of most important concern. So, low temperature germinability and mesocotyl elongation should be considered. In this study, we evaluated the mesocotyl length and low temperature germination conducted association analysis using 137 korea core collections. An average length of mesocotyl among 137 core collections was skewed range from 0mm to 43mm. we searched candidate gene around target SNP. Such related traits, genome-wide association study (GWAS) analysis was carried out using GAPIT. Also, average mesocotyl length of 394 korea landrace cultivars was measured ranging from minimum 0 mm to maximum 34mm. 30 out of 394 Korea landrace cultivar conducted re-sequencing, and haplotype analysis of candidate gene. we searched these related resources, which including germination of low temperature and mesocotyl elongation. This could be used for the development of direct-seeding cultivars. The valiated accession of core collection and landrace cultivars will be used development of direct-seedling cultivar in the future.

  • PDF

Application of Bioinformatics for the Functional Genomics Analysis of Prostate Cancer Therapy

  • Mousses, Spyro
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.74-82
    • /
    • 2000
  • Prostate cancer initially responds and regresses in response to androgen depletion therapy, but most human prostate cancers will eventually recur, and re-grow as an androgen independent tumor. Once these tumors become hormone refractory, they usually are incurable leading to death for the patient. Little is known about the molecular details of how prostate cancer cells regress following androgen ablation and which genes are involved in the androgen independent growth following the development of resistance to therapy. Such knowledge would reveal putative drug targets useful in the rational therapeutic design to prevent therapy resistance and control androgen independent growth. The application of genome scale technologies have permitted new insights into the molecular mechanisms associated with these processes. Specifically, we have applied functional genomics using high density cDNA microarray analysis for parallel gene expression analysis of prostate cancer in an experimental xenograft system during androgen withdrawal therapy, and following therapy resistance, The large amount of expression data generated posed a formidable bioinformatics challenge. A novel template based gene clustering algorithm was developed and applied to the data to discover the genes that respond to androgen ablation. The data show restoration of expression of androgen dependent genes in the recurrent tumors and other signaling genes. Together, the discovered genes appear to be involved in prostate cancer cell growth and therapy resistance in this system. We have also developed and applied tissue microarray (TMA) technology for high throughput molecular analysis of hundreds to thousands of clinical specimens simultaneously. TMA analysis was used for rapid clinical translation of candidate genes discovered by cDNA microarray analysis to determine their clinical utility as diagnostic, prognostic, and therapeutic targets. Finally, we have developed a bioinformatic approach to combine pharmacogenomic data on the efficacy and specificity of various drugs to target the discovered prostate cancer growth associated candidate genes in an attempt to improve current therapeutics.

  • PDF

Fine localization of a new cataract locus, Kec, on mouse chromosome 14 and exclusion of candidate genes as the gene that causes cataract in the Kec mouse

  • Kang, Min-Ji;Cho, Jae-Woo;Kim, Jeong-Ki;Kim, Eun-Min;Kim, Jae-Young;Cho, Kyu-Hyuk;Song, Chang-Woo;KimYoon, Sun-Joo
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.651-656
    • /
    • 2008
  • A mouse with cataract, Kec, was generated from N-ethyl-N-nitrosourea (ENU) mutagenesis. Cataract in the Kec mouse was observable at about 5 weeks after birth and this gradually progressed to become completely opaque by 12 weeks. Dissection microscopy revealed that vacuoles with a radial or irregular shape were located primarily in the cortex of the posterior and equatorial regions of the lens. At the late stage, the lens structure was distorted, but not ruptured. This cataract phenotype was inherited in an autosomal recessive manner. We performed a genetic linkage analysis using 133 mutant and 67 normal mice produced by mating Kec mutant (BALB/c) and F1 (C57BL/6 $\times$ Kec) mice. The Kec locus was mapped to the 3 cM region encompassed by D14Mit34 and D14Mit69. In addition we excluded coding sequences of 9 genes including Rcbtb2, P2ry5, Itm2b, Med4, Nudt15, Esd, Lcp1, Slc25a30, and 2810032E02Rik as the candidate gene that causes cataract in the Kec mouse.

Supragingival Plaque Microbial Community Analysis of Children with Halitosis

  • Ren, Wen;Zhang, Qun;Liu, Xuenan;Zheng, Shuguo;Ma, Lili;Chen, Feng;Xu, Tao;Xu, Baohua
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2141-2147
    • /
    • 2016
  • As one of the most complex human-associated microbial habitats, the oral cavity harbors hundreds of bacteria. Halitosis is a prevalent oral condition that is typically caused by bacteria. The aim of this study was to analyze the microbial communities and predict functional profiles in supragingival plaque from healthy individuals and those with halitosis. Ten preschool children were enrolled in this study; five with halitosis and five without. Supragingival plaque was isolated from each participant and 16S rRNA gene pyrosequencing was used to identify the microbes present. Samples were primarily composed of Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and Candidate phylum TM7. The ${\alpha}$ and ${\beta}$ diversity indices did not differ between healthy and halitosis subjects. Fifteen operational taxonomic units (OTUs) were identified with significantly different relative abundances between healthy and halitosis plaques, and included the phylotypes of Prevotella sp., Leptotrichia sp., Actinomyces sp., Porphyromonas sp., Selenomonas sp., Selenomonas noxia, and Capnocytophaga ochracea. We suggest that these OTUs are candidate halitosis-associated pathogens. Functional profiles were predicted using PICRUSt, and nine level-3 KEGG Orthology groups were significantly different. Hub modules of co-occurrence networks implied that microbes in halitosis dental plaque were more highly conserved than microbes of healthy individuals' plaque. Collectively, our data provide a background for the oral microbiota associated with halitosis from supragingival plaque, and help explain the etiology of halitosis.

Identification of quantitative trait loci for the fatty acid composition in Korean native chicken

  • Jin, Shil;Park, Hee Bok;Seo, Dongwon;Choi, Nu Ri;Manjula, Prabuddha;Cahyadi, Muhammad;Jung, Samooel;Jo, Cheorun;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1134-1140
    • /
    • 2018
  • Objective: Fatty acid composition is one of the most important meat quality traits because it can contribute to functional, sensorial, and nutritional factors. In this study, quantitative trait locus (QTL) analyses for fatty acid composition traits were investigated in thigh and breast meat of Korean native chicken (KNC). Methods: In total, 18 fatty acid composition traits were investigated from each meat sample using 83 parents, and 595 $F_1$ chicks of 20 week old. Genotype assessment was performed using 171 informative DNA markers on 26 autosomes. The KNC linkage map was constructed by CRI-MAP software, which calculated genetic distances, with map orders between markers. The half-sib and full-sib QTL analyses were performed using GridQTL and SOLAR programs, respectively. Results: In total, 30 QTLs (12 in the thigh and 18 in the breast meat) were detected by the half-sib analysis and 7 QTLs (3 in the thigh and 4 in the breast meat) were identified by the full-sib analysis. Conclusion: With further verification of the QTL regions using additional markers and positional candidate gene studies, these results can provide valuable information for determining causative mutations affecting the fatty acid composition of KNC meat. Moreover, these findings may aid in the selection of birds with favorable fatty acid composition traits.

Evaluation of Three Candidate Genes Affecting Fatty Acid Composition in Pigs

  • Maharani, Dyah;Jung, Yeon-kuk;Jo, Cheorun;Jung, Woo-Young;Nam, Ki-Chang;Seo, Kang-Seok;Lee, Seung-Hwan;Lee, Jun-Heon
    • Food Science of Animal Resources
    • /
    • v.32 no.1
    • /
    • pp.6-12
    • /
    • 2012
  • The association of three candidate genes, fatty acid synthase (FASN), microsomal triglyceride transfer protein (MTTP) and fatty acid binding protein 3 (FABP3), with fatty acid (FA) composition in Duroc pigs was investigated. Identified single nucleotide polymorphisms (SNPs) were used for polymerase chain reaction-restriction fragment length polymorphism genotyping. The c.265C>T SNP of FASN gene was significantly associated with high levels of palmitoleic acid (C16:1) (p<0.05), oleic acid (C18:1) (p<0.01), and mono-unsaturated fatty acid (MUFA) (p<0.01), but low levels of linoleic acid (C18:2) (p<0.01), alpha linolenic acid (C18:3) (p<0.05), and poly-unsaturated fatty acid (PUFA) (p<0.01) in animals having the CT genotype. The c.2573T>C SNP in the MTTP gene had a significant effect only in elevating the level of palmitoleic acid (C16:1) (p<0.05) in heterozygote animals. The polymorphism in FABP3 showed no significant effects on any fatty acid composition traits. These results suggest that the identified SNPs in the FASN and MTTP genes can be useful markers for selecting Duroc pigs having desirable healthy fatty acid composition.

Identification of stemness and differentially expressed genes in human cementum-derived cells

  • Lee, EunHye;Kim, Young-Sung;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.329-341
    • /
    • 2021
  • Purpose: Periodontal treatment aims at complete regeneration of the periodontium, and developing strategies for periodontal regeneration requires a deep understanding of the tissues composing the periodontium. In the present study, the stemness characteristics and gene expression profiles of cementum-derived cells (CDCs) were investigated and compared with previously established human stem cells. Candidate marker proteins for CDCs were also explored. Methods: Periodontal ligament stem cells (PDLSCs), pulp stem cells (PULPSCs), and CDCs were isolated and cultured from extracted human mandibular third molars. Human bone marrow stem cells (BMSCs) were used as a positive control. To identify the stemness of CDCs, cell differentiation (osteogenic, adipogenic, and chondrogenic) and surface antigens were evaluated through flow cytometry. The expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP) was investigated to explore marker proteins for CDCs through reverse-transcription polymerase chain reaction. To compare the gene expression profiles of the 4 cell types, mRNA and miRNA microarray analysis of 10 samples of BMSCs (n=1), PDLSCs (n=3), PULPSCs (n=3), and CDCs (n=3) were performed. Results: The expression of mesenchymal stem cell markers with a concomitant absence of hematopoietic markers was observed in PDLSCs, PULPSCs, CDCs and BMSCs. All 4 cell populations also showed differentiation into osteogenic, adipogenic, and chondrogenic lineages. CEMP1 was strongly expressed in CDCs, while it was weakly detected in the other 3 cell populations. Meanwhile, CAP was not found in any of the 4 cell populations. The mRNA and miRNA microarray analysis showed that 14 mRNA genes and 4 miRNA genes were differentially expressed in CDCs vs. PDLSCs and PULPSCs. Conclusions: Within the limitations of the study, CDCs seem to have stemness and preferentially express CEMP1. Moreover, there were several up- or down-regulated genes in CDCs vs. PDLSCs, PULPSCs, and BMSCs and these genes could be candidate marker proteins of CDCs.

A Novel Endo-Polygalacturonase from Penicillium oxalicum: Gene Cloning, Heterologous Expression and Its Use in Acidic Fruit Juice Extraction

  • Lu, Bo;Xian, Liang;Zhu, Jing;Wei, Yunyi;Yang, Chengwei;Cheng, Zhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.464-472
    • /
    • 2022
  • An endo-polygalacturonase (endo-PGase) exhibiting excellent performance during acidic fruit juice production would be highly attractive to the fruit juice industry. However, candidate endo-PGases for this purpose have rarely been reported. In this study, we expressed a gene from Penicillium oxalicum in Pichia pastoris. The recombinant enzyme PoxaEnPG28C had an optimal enzyme activity at pH 4.5 and 45℃ and was stable at pH 3.0-6.5 and < 45℃. The enzyme had a specific activity of 4,377.65 ± 55.37 U/mg towards polygalacturonic acid, and the Km and Vmax values of PoxaEnPG28C were calculated as 1.64 g/l and 6127.45 U/mg, respectively. PoxaEnPG28C increased the light transmittance of orange, lemon, strawberry and hawthorn juice by 13.9 ± 0.3%, 29.4 ± 3.8%, 95.7 ± 10.2% and 79.8 ± 1.7%, respectively; it reduced the viscosity of the same juices by 25.7 ± 1.6%, 52.0 ± 4.5%, 48.2 ± 0.7% and 80.5 ± 2.3%, respectively, and it increased the yield of the juices by 24.5 ± 0.7%, 12.7 ± 2.2%, 48.5 ± 4.2% and 104.5 ± 6.4%, respectively. Thus, PoxaEnPG28C could be considered an excellent candidate enzyme for acidic fruit juice production. Remarkably, fruit juice production using hawthorn as an material was reported for the first time.

Comparative Transcriptome Analysis of Sucrose Biosynthesis-Associated Gene Expression Using RNA-Seq at Various Growth Periods in Sugar Beet (Beta vulgaris L.)

  • Baul Yang;Ye-Jin Lee;Dong-Gun Kim;Sang Hoon Kim;Woon Ji Kim;Jae Hoon Kim;So Hyeon Baek;Joon-Woo Ahn;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.63-63
    • /
    • 2023
  • Sugar beet (Beta vulgaris L.) is one of the most important sugar crops and provides up to 30% of the world's sugar production. In this study, we mainly performed RNA-sequencing to obtain identify putative genes involved in biosynthesis pathway of sucrose in sugar beet and comparative transcriptomic analyses in the four developmental stages (50, 90, 160 and 330 days after seedling). As a result of the sugar content analysis, it was increased significantly from 50 to 160 days after seedling (DAS), and then decreased at 330 DAS. On the other hand, the taproot weight, length, and width were increased during all the growth periods. Out of 21,451 genes with expressed value, 21,402 (99.77%) genes had functional descriptions. Among the three comparisons, S1 (50 DAS) vs. S2 (90 DAS), S1 vs. S3 (160 DAS), and S1 vs. S4 (330 DAS), expression profiling of the transcripts was identified 4,991 with differentially expressed genes (DEGs). By comparing the top 20 enriched gene ontology (GO) terms as three comparisons, the top GO terms were commonly confirmed with external encapsulating structure, cell wall, and extracellular regions. In addition, the 38 enriched candidate genes related to sucrose biosynthetic pathway were screened from the entire DEG pool, and the candidate genes might be providing a basic data for further sugar metabolism studies in development of sugar beet taproot.

  • PDF

CONSTRUCTION OF RECOMBINANT HSCC-1 ADENOVIRUS VECTOR FOR ORAL CANCER GENE THERAPY (구강암 유전자 치료를 위한 재조합 HSCC-1 아데노바이러스의 개발)

  • Kim, Chang-Hyen;Kim, Jin-Woo;Kim, Myung-Jin;Pyo, Sung-Woon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.2
    • /
    • pp.103-109
    • /
    • 2005
  • In spite of the ongoing advances, standard therapies for oral cancer still has some limitations in efficacy and in ability to prolong survival rate of advanced disease and result in significant functional defect and severe cosmetic deformity. Currently gene therapy using tumor suppressor gene is considered as a potent candidate for new therapeutic approaches that can improve efficacy and reduce complications. The purpose of this research is to identify the role of adenoviral vector to transfer HCCS-1 tumor suppressor gene in oral cancer cells and to find out whether there is a possibility for it to serve in the field of gene therapy. The human SCC-25 cell line was used for transfection. To determine the efficiency of the adenovirus as a gene delivery vector cell line was transduced with LacZ gene and analysed with X-gal staining. Northern blot was performed to confirm the tranfection with HSCC-1 gene and cell viability was assessed by cell cytotoxicity assay. We had successfully construct the recombinant HSCC-1 adenovirus(Ad5CMV-HCCS-1). DNA extracted from Ad5CMV-HCCS-1 revealed HCCS-1 gene is incorporated. The transduction efficiencies were over than 50% of SCC-25 cells with a MOI of 2 and over 95% with a MOI of 50. Northern blot analysis showed that a single 0.6kb mRNA transcript was expressed in Ad5CMV-HCCS-1 transduced SCC-25 cells. There was no or very low transcription HCCS-1 mRNA in wild and Ad5CMV-LacZ transduced SCC-25 cells. Cells transduced with Ad5CMV-HCCS-1 showed significant growth inhibition. By day 6, Ad5CMV-HCCS-1 treated cell count was decreased to 30% of mock-infected cells, while that of Ad5CMV-LacZ treated cells was 90% of mock-infected cells (p<0.05). Finally, these result suggest that the Ad5CMV-HCCS-1 has potential as a gene therapy tool for oral cancer.